
Rocky Enterprise Linux 9.2 Manual Pages on command 'backtrace_symbols_fd.3'

$ man backtrace_symbols_fd.3

BACKTRACE(3) Linux Programmer's Manual BACKTRACE(3)

NAME

 backtrace, backtrace_symbols, backtrace_symbols_fd - support for application self-debug?

 ging

SYNOPSIS

 #include <execinfo.h>

 int backtrace(void **buffer, int size);

 char **backtrace_symbols(void *const *buffer, int size);

 void backtrace_symbols_fd(void *const *buffer, int size, int fd);

DESCRIPTION

 backtrace() returns a backtrace for the calling program, in the array pointed to by buf?

 fer. A backtrace is the series of currently active function calls for the program. Each

 item in the array pointed to by buffer is of type void *, and is the return address from

 the corresponding stack frame. The size argument specifies the maximum number of ad?

 dresses that can be stored in buffer. If the backtrace is larger than size, then the ad?

 dresses corresponding to the size most recent function calls are returned; to obtain the

 complete backtrace, make sure that buffer and size are large enough.

 Given the set of addresses returned by backtrace() in buffer, backtrace_symbols() trans?

 lates the addresses into an array of strings that describe the addresses symbolically.

 The size argument specifies the number of addresses in buffer. The symbolic representa?

 tion of each address consists of the function name (if this can be determined), a hexadec?

 imal offset into the function, and the actual return address (in hexadecimal). The ad?

 dress of the array of string pointers is returned as the function result of backtrace_sym? Page 1/5

 bols(). This array is malloc(3)ed by backtrace_symbols(), and must be freed by the

 caller. (The strings pointed to by the array of pointers need not and should not be

 freed.)

 backtrace_symbols_fd() takes the same buffer and size arguments as backtrace_symbols(),

 but instead of returning an array of strings to the caller, it writes the strings, one per

 line, to the file descriptor fd. backtrace_symbols_fd() does not call malloc(3), and so

 can be employed in situations where the latter function might fail, but see NOTES.

RETURN VALUE

 backtrace() returns the number of addresses returned in buffer, which is not greater than

 size. If the return value is less than size, then the full backtrace was stored; if it is

 equal to size, then it may have been truncated, in which case the addresses of the oldest

 stack frames are not returned.

 On success, backtrace_symbols() returns a pointer to the array malloc(3)ed by the call; on

 error, NULL is returned.

VERSIONS

 backtrace(), backtrace_symbols(), and backtrace_symbols_fd() are provided in glibc since

 version 2.1.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?backtrace(), ? Thread safety ? MT-Safe ?

 ?backtrace_symbols(), ? ? ?

 ?backtrace_symbols_fd() ? ? ?

 ???

CONFORMING TO

 These functions are GNU extensions.

NOTES

 These functions make some assumptions about how a function's return address is stored on

 the stack. Note the following:

 * Omission of the frame pointers (as implied by any of gcc(1)'s nonzero optimization lev?

 els) may cause these assumptions to be violated. Page 2/5

 * Inlined functions do not have stack frames.

 * Tail-call optimization causes one stack frame to replace another.

 * backtrace() and backtrace_symbols_fd() don't call malloc() explicitly, but they are

 part of libgcc, which gets loaded dynamically when first used. Dynamic loading usually

 triggers a call to malloc(3). If you need certain calls to these two functions to not

 allocate memory (in signal handlers, for example), you need to make sure libgcc is

 loaded beforehand.

 The symbol names may be unavailable without the use of special linker options. For sys?

 tems using the GNU linker, it is necessary to use the -rdynamic linker option. Note that

 names of "static" functions are not exposed, and won't be available in the backtrace.

EXAMPLES

 The program below demonstrates the use of backtrace() and backtrace_symbols(). The fol?

 lowing shell session shows what we might see when running the program:

 $ cc -rdynamic prog.c -o prog

 $./prog 3

 backtrace() returned 8 addresses

 ./prog(myfunc3+0x5c) [0x80487f0]

 ./prog [0x8048871]

 ./prog(myfunc+0x21) [0x8048894]

 ./prog(myfunc+0x1a) [0x804888d]

 ./prog(myfunc+0x1a) [0x804888d]

 ./prog(main+0x65) [0x80488fb]

 /lib/libc.so.6(__libc_start_main+0xdc) [0xb7e38f9c]

 ./prog [0x8048711]

 Program source

 #include <execinfo.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define BT_BUF_SIZE 100

 void

 myfunc3(void)

 { Page 3/5

 int nptrs;

 void *buffer[BT_BUF_SIZE];

 char **strings;

 nptrs = backtrace(buffer, BT_BUF_SIZE);

 printf("backtrace() returned %d addresses\n", nptrs);

 /* The call backtrace_symbols_fd(buffer, nptrs, STDOUT_FILENO)

 would produce similar output to the following: */

 strings = backtrace_symbols(buffer, nptrs);

 if (strings == NULL) {

 perror("backtrace_symbols");

 exit(EXIT_FAILURE);

 }

 for (int j = 0; j < nptrs; j++)

 printf("%s\n", strings[j]);

 free(strings);

 }

 static void /* "static" means don't export the symbol... */

 myfunc2(void)

 {

 myfunc3();

 }

 void

 myfunc(int ncalls)

 {

 if (ncalls > 1)

 myfunc(ncalls - 1);

 else

 myfunc2();

 }

 int

 main(int argc, char *argv[])

 {

 if (argc != 2) { Page 4/5

 fprintf(stderr, "%s num-calls\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 myfunc(atoi(argv[1]));

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 addr2line(1), gcc(1), gdb(1), ld(1), dlopen(3), malloc(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 BACKTRACE(3)

Page 5/5

