
Rocky Enterprise Linux 9.2 Manual Pages on command 'awk.1'

$ man awk.1

GAWK(1) Utility Commands GAWK(1)

NAME

 gawk - pattern scanning and processing language

SYNOPSIS

 gawk [POSIX or GNU style options] -f program-file [--] file ...

 gawk [POSIX or GNU style options] [--] program-text file ...

DESCRIPTION

 Gawk is the GNU Project's implementation of the AWK programming language. It conforms to

 the definition of the language in the POSIX 1003.1 standard. This version in turn is

 based on the description in The AWK Programming Language, by Aho, Kernighan, and Wein?

 berger. Gawk provides the additional features found in the current version of Brian

 Kernighan's awk and numerous GNU-specific extensions.

 The command line consists of options to gawk itself, the AWK program text (if not supplied

 via the -f or --include options), and values to be made available in the ARGC and ARGV

 pre-defined AWK variables.

 When gawk is invoked with the --profile option, it starts gathering profiling statistics

 from the execution of the program. Gawk runs more slowly in this mode, and automatically

 produces an execution profile in the file awkprof.out when done. See the --profile op?

 tion, below.

 Gawk also has an integrated debugger. An interactive debugging session can be started by

 supplying the --debug option to the command line. In this mode of execution, gawk loads

 the AWK source code and then prompts for debugging commands. Gawk can only debug AWK pro?

 gram source provided with the -f and --include options. The debugger is documented in Page 1/43

 GAWK: Effective AWK Programming.

OPTION FORMAT

 Gawk options may be either traditional POSIX-style one letter options, or GNU-style long

 options. POSIX options start with a single ?-?, while long options start with ?--?. Long

 options are provided for both GNU-specific features and for POSIX-mandated features.

 Gawk-specific options are typically used in long-option form. Arguments to long options

 are either joined with the option by an = sign, with no intervening spaces, or they may be

 provided in the next command line argument. Long options may be abbreviated, as long as

 the abbreviation remains unique.

 Additionally, every long option has a corresponding short option, so that the option's

 functionality may be used from within #! executable scripts.

OPTIONS

 Gawk accepts the following options. Standard options are listed first, followed by op?

 tions for gawk extensions, listed alphabetically by short option.

 -f program-file

 --file program-file

 Read the AWK program source from the file program-file, instead of from the first

 command line argument. Multiple -f (or --file) options may be used. Files read

 with -f are treated as if they begin with an implicit @namespace "awk" statement.

 -F fs

 --field-separator fs

 Use fs for the input field separator (the value of the FS predefined variable).

 -v var=val

 --assign var=val

 Assign the value val to the variable var, before execution of the program begins.

 Such variable values are available to the BEGIN rule of an AWK program.

 -b

 --characters-as-bytes

 Treat all input data as single-byte characters. In other words, don't pay any at?

 tention to the locale information when attempting to process strings as multibyte

 characters. The --posix option overrides this one.

 -c

 --traditional Page 2/43

 Run in compatibility mode. In compatibility mode, gawk behaves identically to

 Brian Kernighan's awk; none of the GNU-specific extensions are recognized. See GNU

 EXTENSIONS, below, for more information.

 -C

 --copyright

 Print the short version of the GNU copyright information message on the standard

 output and exit successfully.

 -d[file]

 --dump-variables[=file]

 Print a sorted list of global variables, their types and final values to file. If

 no file is provided, gawk uses a file named awkvars.out in the current directory.

 Having a list of all the global variables is a good way to look for typographical

 errors in your programs. You would also use this option if you have a large pro?

 gram with a lot of functions, and you want to be sure that your functions don't in?

 advertently use global variables that you meant to be local. (This is a particu?

 larly easy mistake to make with simple variable names like i, j, and so on.)

 -D[file]

 --debug[=file]

 Enable debugging of AWK programs. By default, the debugger reads commands interac?

 tively from the keyboard (standard input). The optional file argument specifies a

 file with a list of commands for the debugger to execute non-interactively.

 -e program-text

 --source program-text

 Use program-text as AWK program source code. This option allows the easy intermix?

 ing of library functions (used via the -f and --include options) with source code

 entered on the command line. It is intended primarily for medium to large AWK pro?

 grams used in shell scripts. Each argument supplied via -e is treated as if it be?

 gins with an implicit @namespace "awk" statement.

 -E file

 --exec file

 Similar to -f, however, this is option is the last one processed. This should be

 used with #! scripts, particularly for CGI applications, to avoid passing in op?

 tions or source code (!) on the command line from a URL. This option disables com? Page 3/43

 mand-line variable assignments.

 -g

 --gen-pot

 Scan and parse the AWK program, and generate a GNU .pot (Portable Object Template)

 format file on standard output with entries for all localizable strings in the pro?

 gram. The program itself is not executed. See the GNU gettext distribution for

 more information on .pot files.

 -h

 --help Print a relatively short summary of the available options on the standard output.

 (Per the GNU Coding Standards, these options cause an immediate, successful exit.)

 -i include-file

 --include include-file

 Load an awk source library. This searches for the library using the AWKPATH envi?

 ronment variable. If the initial search fails, another attempt will be made after

 appending the .awk suffix. The file will be loaded only once (i.e., duplicates are

 eliminated), and the code does not constitute the main program source. Files read

 with --include are treated as if they begin with an implicit @namespace "awk"

 statement.

 -l lib

 --load lib

 Load a gawk extension from the shared library lib. This searches for the library

 using the AWKLIBPATH environment variable. If the initial search fails, another

 attempt will be made after appending the default shared library suffix for the

 platform. The library initialization routine is expected to be named dl_load().

 -L [value]

 --lint[=value]

 Provide warnings about constructs that are dubious or non-portable to other AWK im?

 plementations. With an optional argument of fatal, lint warnings become fatal er?

 rors. This may be drastic, but its use will certainly encourage the development of

 cleaner AWK programs. With an optional argument of invalid, only warnings about

 things that are actually invalid are issued. (This is not fully implemented yet.)

 With an optional argument of no-ext, warnings about gawk extensions are disabled.

 -M Page 4/43

 --bignum

 Force arbitrary precision arithmetic on numbers. This option has no effect if gawk

 is not compiled to use the GNU MPFR and GMP libraries. (In such a case, gawk is?

 sues a warning.)

 -n

 --non-decimal-data

 Recognize octal and hexadecimal values in input data. Use this option with great

 caution!

 -N

 --use-lc-numeric

 Force gawk to use the locale's decimal point character when parsing input data.

 Although the POSIX standard requires this behavior, and gawk does so when --posix

 is in effect, the default is to follow traditional behavior and use a period as the

 decimal point, even in locales where the period is not the decimal point character.

 This option overrides the default behavior, without the full draconian strictness

 of the --posix option.

 -o[file]

 --pretty-print[=file]

 Output a pretty printed version of the program to file. If no file is provided,

 gawk uses a file named awkprof.out in the current directory. This option implies

 --no-optimize.

 -O

 --optimize

 Enable gawk's default optimizations upon the internal representation of the pro?

 gram. Currently, this just includes simple constant folding. This option is on by

 default.

 -p[prof-file]

 --profile[=prof-file]

 Start a profiling session, and send the profiling data to prof-file. The default

 is awkprof.out. The profile contains execution counts of each statement in the

 program in the left margin and function call counts for each user-defined function.

 This option implies --no-optimize.

 -P Page 5/43

 --posix

 This turns on compatibility mode, with the following additional restrictions:

 ? \x escape sequences are not recognized.

 ? You cannot continue lines after ? and :.

 ? The synonym func for the keyword function is not recognized.

 ? The operators ** and **= cannot be used in place of ^ and ^=.

 -r

 --re-interval

 Enable the use of interval expressions in regular expression matching (see Regular

 Expressions, below). Interval expressions were not traditionally available in the

 AWK language. The POSIX standard added them, to make awk and egrep consistent with

 each other. They are enabled by default, but this option remains for use together

 with --traditional.

 -s

 --no-optimize

 Disable gawk's default optimizations upon the internal representation of the pro?

 gram.

 -S

 --sandbox

 Run gawk in sandbox mode, disabling the system() function, input redirection with

 getline, output redirection with print and printf, and loading dynamic extensions.

 Command execution (through pipelines) is also disabled. This effectively blocks a

 script from accessing local resources, except for the files specified on the com?

 mand line.

 -t

 --lint-old

 Provide warnings about constructs that are not portable to the original version of

 UNIX awk.

 -V

 --version

 Print version information for this particular copy of gawk on the standard output.

 This is useful mainly for knowing if the current copy of gawk on your system is up

 to date with respect to whatever the Free Software Foundation is distributing. Page 6/43

 This is also useful when reporting bugs. (Per the GNU Coding Standards, these op?

 tions cause an immediate, successful exit.)

 -- Signal the end of options. This is useful to allow further arguments to the AWK

 program itself to start with a ?-?. This provides consistency with the argument

 parsing convention used by most other POSIX programs.

 In compatibility mode, any other options are flagged as invalid, but are otherwise ig?

 nored. In normal operation, as long as program text has been supplied, unknown options

 are passed on to the AWK program in the ARGV array for processing. This is particularly

 useful for running AWK programs via the #! executable interpreter mechanism.

 For POSIX compatibility, the -W option may be used, followed by the name of a long option.

AWK PROGRAM EXECUTION

 An AWK program consists of a sequence of optional directives, pattern-action statements,

 and optional function definitions.

 @include "filename"

 @load "filename"

 @namespace "name"

 pattern { action statements }

 function name(parameter list) { statements }

 Gawk first reads the program source from the program-file(s) if specified, from arguments

 to --source, or from the first non-option argument on the command line. The -f and

 --source options may be used multiple times on the command line. Gawk reads the program

 text as if all the program-files and command line source texts had been concatenated to?

 gether. This is useful for building libraries of AWK functions, without having to include

 them in each new AWK program that uses them. It also provides the ability to mix library

 functions with command line programs.

 In addition, lines beginning with @include may be used to include other source files into

 your program, making library use even easier. This is equivalent to using the --include

 option.

 Lines beginning with @load may be used to load extension functions into your program.

 This is equivalent to using the --load option.

 The environment variable AWKPATH specifies a search path to use when finding source files

 named with the -f and --include options. If this variable does not exist, the default

 path is ".:/usr/local/share/awk". (The actual directory may vary, depending upon how gawk Page 7/43

 was built and installed.) If a file name given to the -f option contains a ?/? character,

 no path search is performed.

 The environment variable AWKLIBPATH specifies a search path to use when finding source

 files named with the --load option. If this variable does not exist, the default path is

 "/usr/local/lib/gawk". (The actual directory may vary, depending upon how gawk was built

 and installed.)

 Gawk executes AWK programs in the following order. First, all variable assignments speci?

 fied via the -v option are performed. Next, gawk compiles the program into an internal

 form. Then, gawk executes the code in the BEGIN rule(s) (if any), and then proceeds to

 read each file named in the ARGV array (up to ARGV[ARGC-1]). If there are no files named

 on the command line, gawk reads the standard input.

 If a filename on the command line has the form var=val it is treated as a variable assign?

 ment. The variable var will be assigned the value val. (This happens after any BEGIN

 rule(s) have been run.) Command line variable assignment is most useful for dynamically

 assigning values to the variables AWK uses to control how input is broken into fields and

 records. It is also useful for controlling state if multiple passes are needed over a

 single data file.

 If the value of a particular element of ARGV is empty (""), gawk skips over it.

 For each input file, if a BEGINFILE rule exists, gawk executes the associated code before

 processing the contents of the file. Similarly, gawk executes the code associated with

 ENDFILE after processing the file.

 For each record in the input, gawk tests to see if it matches any pattern in the AWK pro?

 gram. For each pattern that the record matches, gawk executes the associated action. The

 patterns are tested in the order they occur in the program.

 Finally, after all the input is exhausted, gawk executes the code in the END rule(s) (if

 any).

 Command Line Directories

 According to POSIX, files named on the awk command line must be text files. The behavior

 is ``undefined'' if they are not. Most versions of awk treat a directory on the command

 line as a fatal error.

 Starting with version 4.0 of gawk, a directory on the command line produces a warning, but

 is otherwise skipped. If either of the --posix or --traditional options is given, then

 gawk reverts to treating directories on the command line as a fatal error. Page 8/43

VARIABLES, RECORDS AND FIELDS

 AWK variables are dynamic; they come into existence when they are first used. Their val?

 ues are either floating-point numbers or strings, or both, depending upon how they are

 used. Additionally, gawk allows variables to have regular-expression type. AWK also has

 one dimensional arrays; arrays with multiple dimensions may be simulated. Gawk provides

 true arrays of arrays; see Arrays, below. Several pre-defined variables are set as a pro?

 gram runs; these are described as needed and summarized below.

 Records

 Normally, records are separated by newline characters. You can control how records are

 separated by assigning values to the built-in variable RS. If RS is any single character,

 that character separates records. Otherwise, RS is a regular expression. Text in the in?

 put that matches this regular expression separates the record. However, in compatibility

 mode, only the first character of its string value is used for separating records. If RS

 is set to the null string, then records are separated by empty lines. When RS is set to

 the null string, the newline character always acts as a field separator, in addition to

 whatever value FS may have.

 Fields

 As each input record is read, gawk splits the record into fields, using the value of the

 FS variable as the field separator. If FS is a single character, fields are separated by

 that character. If FS is the null string, then each individual character becomes a sepa?

 rate field. Otherwise, FS is expected to be a full regular expression. In the special

 case that FS is a single space, fields are separated by runs of spaces and/or tabs and/or

 newlines. NOTE: The value of IGNORECASE (see below) also affects how fields are split

 when FS is a regular expression, and how records are separated when RS is a regular ex?

 pression.

 If the FIELDWIDTHS variable is set to a space-separated list of numbers, each field is ex?

 pected to have fixed width, and gawk splits up the record using the specified widths.

 Each field width may optionally be preceded by a colon-separated value specifying the num?

 ber of characters to skip before the field starts. The value of FS is ignored. Assigning

 a new value to FS or FPAT overrides the use of FIELDWIDTHS.

 Similarly, if the FPAT variable is set to a string representing a regular expression, each

 field is made up of text that matches that regular expression. In this case, the regular

 expression describes the fields themselves, instead of the text that separates the fields. Page 9/43

 Assigning a new value to FS or FIELDWIDTHS overrides the use of FPAT.

 Each field in the input record may be referenced by its position: $1, $2, and so on. $0

 is the whole record, including leading and trailing whitespace. Fields need not be refer?

 enced by constants:

 n = 5

 print $n

 prints the fifth field in the input record.

 The variable NF is set to the total number of fields in the input record.

 References to non-existent fields (i.e., fields after $NF) produce the null string. How?

 ever, assigning to a non-existent field (e.g., $(NF+2) = 5) increases the value of NF,

 creates any intervening fields with the null string as their values, and causes the value

 of $0 to be recomputed, with the fields being separated by the value of OFS. References

 to negative numbered fields cause a fatal error. Decrementing NF causes the values of

 fields past the new value to be lost, and the value of $0 to be recomputed, with the

 fields being separated by the value of OFS.

 Assigning a value to an existing field causes the whole record to be rebuilt when $0 is

 referenced. Similarly, assigning a value to $0 causes the record to be resplit, creating

 new values for the fields.

 Built-in Variables

 Gawk's built-in variables are:

 ARGC The number of command line arguments (does not include options to gawk, or the

 program source).

 ARGIND The index in ARGV of the current file being processed.

 ARGV Array of command line arguments. The array is indexed from 0 to ARGC - 1.

 Dynamically changing the contents of ARGV can control the files used for data.

 BINMODE On non-POSIX systems, specifies use of ?binary? mode for all file I/O. Nu?

 meric values of 1, 2, or 3, specify that input files, output files, or all

 files, respectively, should use binary I/O. String values of "r", or "w"

 specify that input files, or output files, respectively, should use binary

 I/O. String values of "rw" or "wr" specify that all files should use binary

 I/O. Any other string value is treated as "rw", but generates a warning mes?

 sage.

 CONVFMT The conversion format for numbers, "%.6g", by default. Page 10/43

 ENVIRON An array containing the values of the current environment. The array is in?

 dexed by the environment variables, each element being the value of that vari?

 able (e.g., ENVIRON["HOME"] might be "/home/arnold").

 In POSIX mode, changing this array does not affect the environment seen by

 programs which gawk spawns via redirection or the system() function. Other?

 wise, gawk updates its real environment so that programs it spawns see the

 changes.

 ERRNO If a system error occurs either doing a redirection for getline, during a read

 for getline, or during a close(), then ERRNO is set to a string describing the

 error. The value is subject to translation in non-English locales. If the

 string in ERRNO corresponds to a system error in the errno(3) variable, then

 the numeric value can be found in PROCINFO["errno"]. For non-system errors,

 PROCINFO["errno"] will be zero.

 FIELDWIDTHS A whitespace-separated list of field widths. When set, gawk parses the input

 into fields of fixed width, instead of using the value of the FS variable as

 the field separator. Each field width may optionally be preceded by a colon-

 separated value specifying the number of characters to skip before the field

 starts. See Fields, above.

 FILENAME The name of the current input file. If no files are specified on the command

 line, the value of FILENAME is ?-?. However, FILENAME is undefined inside the

 BEGIN rule (unless set by getline).

 FNR The input record number in the current input file.

 FPAT A regular expression describing the contents of the fields in a record. When

 set, gawk parses the input into fields, where the fields match the regular ex?

 pression, instead of using the value of FS as the field separator. See

 Fields, above.

 FS The input field separator, a space by default. See Fields, above.

 FUNCTAB An array whose indices and corresponding values are the names of all the user-

 defined or extension functions in the program. NOTE: You may not use the

 delete statement with the FUNCTAB array.

 IGNORECASE Controls the case-sensitivity of all regular expression and string operations.

 If IGNORECASE has a non-zero value, then string comparisons and pattern match?

 ing in rules, field splitting with FS and FPAT, record separating with RS, Page 11/43

 regular expression matching with ~ and !~, and the gensub(), gsub(), index(),

 match(), patsplit(), split(), and sub() built-in functions all ignore case

 when doing regular expression operations. NOTE: Array subscripting is not af?

 fected. However, the asort() and asorti() functions are affected.

 Thus, if IGNORECASE is not equal to zero, /aB/ matches all of the strings

 "ab", "aB", "Ab", and "AB". As with all AWK variables, the initial value of

 IGNORECASE is zero, so all regular expression and string operations are nor?

 mally case-sensitive.

 LINT Provides dynamic control of the --lint option from within an AWK program.

 When true, gawk prints lint warnings. When false, it does not. The values al?

 lowed for the --lint option may also be assigned to LINT, with the same ef?

 fects. Any other true value just prints warnings.

 NF The number of fields in the current input record.

 NR The total number of input records seen so far.

 OFMT The output format for numbers, "%.6g", by default.

 OFS The output field separator, a space by default.

 ORS The output record separator, by default a newline.

 PREC The working precision of arbitrary precision floating-point numbers, 53 by de?

 fault.

 PROCINFO The elements of this array provide access to information about the running AWK

 program. On some systems, there may be elements in the array, "group1"

 through "groupn" for some n, which is the number of supplementary groups that

 the process has. Use the in operator to test for these elements. The follow?

 ing elements are guaranteed to be available:

 PROCINFO["argv"] The command line arguments as received by gawk at the C-

 language level. The subscripts start from zero.

 PROCINFO["egid"] The value of the getegid(2) system call.

 PROCINFO["errno"] The value of errno(3) when ERRNO is set to the associated

 error message.

 PROCINFO["euid"] The value of the geteuid(2) system call.

 PROCINFO["FS"] "FS" if field splitting with FS is in effect, "FPAT" if

 field splitting with FPAT is in effect, "FIELDWIDTHS" if

 field splitting with FIELDWIDTHS is in effect, or "API" Page 12/43

 if API input parser field splitting is in effect.

 PROCINFO["gid"] The value of the getgid(2) system call.

 PROCINFO["identifiers"]

 A subarray, indexed by the names of all identifiers used

 in the text of the AWK program. The values indicate what

 gawk knows about the identifiers after it has finished

 parsing the program; they are not updated while the pro?

 gram runs. For each identifier, the value of the element

 is one of the following:

 "array" The identifier is an array.

 "builtin" The identifier is a built-in function.

 "extension" The identifier is an extension function

 loaded via @load or --load.

 "scalar" The identifier is a scalar.

 "untyped" The identifier is untyped (could be used as a

 scalar or array, gawk doesn't know yet).

 "user" The identifier is a user-defined function.

 PROCINFO["pgrpid"] The value of the getpgrp(2) system call.

 PROCINFO["pid"] The value of the getpid(2) system call.

 PROCINFO["platform"] A string indicating the platform for which gawk was com?

 piled. It is one of:

 "djgpp", "mingw"

 Microsoft Windows, using either DJGPP, or MinGW,

 respectively.

 "os2" OS/2.

 "posix"

 GNU/Linux, Cygwin, Mac OS X, and legacy Unix sys?

 tems.

 "vms" OpenVMS or Vax/VMS.

 PROCINFO["ppid"] The value of the getppid(2) system call.

 PROCINFO["strftime"] The default time format string for strftime(). Changing

 its value affects how strftime() formats time values when

 called with no arguments. Page 13/43

 PROCINFO["uid"] The value of the getuid(2) system call.

 PROCINFO["version"] The version of gawk.

 The following elements are present if loading dynamic extensions is available:

 PROCINFO["api_major"]

 The major version of the extension API.

 PROCINFO["api_minor"]

 The minor version of the extension API.

 The following elements are available if MPFR support is compiled into gawk:

 PROCINFO["gmp_version"]

 The version of the GNU GMP library used for arbitrary precision number

 support in gawk.

 PROCINFO["mpfr_version"]

 The version of the GNU MPFR library used for arbitrary precision number

 support in gawk.

 PROCINFO["prec_max"]

 The maximum precision supported by the GNU MPFR library for arbitrary

 precision floating-point numbers.

 PROCINFO["prec_min"]

 The minimum precision allowed by the GNU MPFR library for arbitrary

 precision floating-point numbers.

 The following elements may set by a program to change gawk's behavior:

 PROCINFO["NONFATAL"]

 If this exists, then I/O errors for all redirections become nonfatal.

 PROCINFO["name", "NONFATAL"]

 Make I/O errors for name be nonfatal.

 PROCINFO["command", "pty"]

 Use a pseudo-tty for two-way communication with command instead of set?

 ting up two one-way pipes.

 PROCINFO["input", "READ_TIMEOUT"]

 The timeout in milliseconds for reading data from input, where input is

 a redirection string or a filename. A value of zero or less than zero

 means no timeout.

 PROCINFO["input", "RETRY"] Page 14/43

 If an I/O error that may be retried occurs when reading data from in?

 put, and this array entry exists, then getline returns -2 instead of

 following the default behavior of returning -1 and configuring input to

 return no further data. An I/O error that may be retried is one where

 errno(3) has the value EAGAIN, EWOULDBLOCK, EINTR, or ETIMEDOUT. This

 may be useful in conjunction with PROCINFO["input", "READ_TIMEOUT"] or

 in situations where a file descriptor has been configured to behave in

 a non-blocking fashion.

 PROCINFO["sorted_in"]

 If this element exists in PROCINFO, then its value controls the order

 in which array elements are traversed in for loops. Supported values

 are "@ind_str_asc", "@ind_num_asc", "@val_type_asc", "@val_str_asc",

 "@val_num_asc", "@ind_str_desc", "@ind_num_desc", "@val_type_desc",

 "@val_str_desc", "@val_num_desc", and "@unsorted". The value can also

 be the name (as a string) of any comparison function defined as fol?

 lows:

 function cmp_func(i1, v1, i2, v2)

 where i1 and i2 are the indices, and v1 and v2 are the corresponding

 values of the two elements being compared. It should return a number

 less than, equal to, or greater than 0, depending on how the elements

 of the array are to be ordered.

 ROUNDMODE The rounding mode to use for arbitrary precision arithmetic on numbers, by de?

 fault "N" (IEEE-754 roundTiesToEven mode). The accepted values are:

 "A" or "a"

 for rounding away from zero. These are only available if your version

 of the GNU MPFR library supports rounding away from zero.

 "D" or "d" for roundTowardNegative.

 "N" or "n" for roundTiesToEven.

 "U" or "u" for roundTowardPositive.

 "Z" or "z" for roundTowardZero.

 RS The input record separator, by default a newline.

 RT The record terminator. Gawk sets RT to the input text that matched the char?

 acter or regular expression specified by RS. Page 15/43

 RSTART The index of the first character matched by match(); 0 if no match. (This im?

 plies that character indices start at one.)

 RLENGTH The length of the string matched by match(); -1 if no match.

 SUBSEP The string used to separate multiple subscripts in array elements, by default

 "\034".

 SYMTAB An array whose indices are the names of all currently defined global variables

 and arrays in the program. The array may be used for indirect access to read

 or write the value of a variable:

 foo = 5

 SYMTAB["foo"] = 4

 print foo # prints 4

 The typeof() function may be used to test if an element in SYMTAB is an array.

 You may not use the delete statement with the SYMTAB array, nor assign to ele?

 ments with an index that is not a variable name.

 TEXTDOMAIN The text domain of the AWK program; used to find the localized translations

 for the program's strings.

 Arrays

 Arrays are subscripted with an expression between square brackets ([and]). If the ex?

 pression is an expression list (expr, expr ...) then the array subscript is a string con?

 sisting of the concatenation of the (string) value of each expression, separated by the

 value of the SUBSEP variable. This facility is used to simulate multiply dimensioned ar?

 rays. For example:

 i = "A"; j = "B"; k = "C"

 x[i, j, k] = "hello, world\n"

 assigns the string "hello, world\n" to the element of the array x which is indexed by the

 string "A\034B\034C". All arrays in AWK are associative, i.e., indexed by string values.

 The special operator in may be used to test if an array has an index consisting of a par?

 ticular value:

 if (val in array)

 print array[val]

 If the array has multiple subscripts, use (i, j) in array.

 The in construct may also be used in a for loop to iterate over all the elements of an ar?

 ray. However, the (i, j) in array construct only works in tests, not in for loops. Page 16/43

 An element may be deleted from an array using the delete statement. The delete statement

 may also be used to delete the entire contents of an array, just by specifying the array

 name without a subscript.

 gawk supports true multidimensional arrays. It does not require that such arrays be ``rec?

 tangular'' as in C or C++. For example:

 a[1] = 5

 a[2][1] = 6

 a[2][2] = 7

 NOTE: You may need to tell gawk that an array element is really a subarray in order to use

 it where gawk expects an array (such as in the second argument to split()). You can do

 this by creating an element in the subarray and then deleting it with the delete state?

 ment.

 Namespaces

 Gawk provides a simple namespace facility to help work around the fact that all variables

 in AWK are global.

 A qualified name consists of a two simple identifiers joined by a double colon (::). The

 left-hand identifier represents the namespace and the right-hand identifier is the vari?

 able within it. All simple (non-qualified) names are considered to be in the ``current''

 namespace; the default namespace is awk. However, simple identifiers consisting solely of

 uppercase letters are forced into the awk namespace, even if the current namespace is dif?

 ferent.

 You change the current namespace with an @namespace "name" directive.

 The standard predefined builtin function names may not be used as namespace names. The

 names of additional functions provided by gawk may be used as namespace names or as simple

 identifiers in other namespaces. For more details, see GAWK: Effective AWK Programming.

 Variable Typing And Conversion

 Variables and fields may be (floating point) numbers, or strings, or both. They may also

 be regular expressions. How the value of a variable is interpreted depends upon its con?

 text. If used in a numeric expression, it will be treated as a number; if used as a

 string it will be treated as a string.

 To force a variable to be treated as a number, add zero to it; to force it to be treated

 as a string, concatenate it with the null string.

 Uninitialized variables have the numeric value zero and the string value "" (the null, or Page 17/43

 empty, string).

 When a string must be converted to a number, the conversion is accomplished using str?

 tod(3). A number is converted to a string by using the value of CONVFMT as a format

 string for sprintf(3), with the numeric value of the variable as the argument. However,

 even though all numbers in AWK are floating-point, integral values are always converted as

 integers. Thus, given

 CONVFMT = "%2.2f"

 a = 12

 b = a ""

 the variable b has a string value of "12" and not "12.00".

 NOTE: When operating in POSIX mode (such as with the --posix option), beware that locale

 settings may interfere with the way decimal numbers are treated: the decimal separator of

 the numbers you are feeding to gawk must conform to what your locale would expect, be it a

 comma (,) or a period (.).

 Gawk performs comparisons as follows: If two variables are numeric, they are compared nu?

 merically. If one value is numeric and the other has a string value that is a ?numeric

 string,? then comparisons are also done numerically. Otherwise, the numeric value is con?

 verted to a string and a string comparison is performed. Two strings are compared, of

 course, as strings.

 Note that string constants, such as "57", are not numeric strings, they are string con?

 stants. The idea of ?numeric string? only applies to fields, getline input, FILENAME,

 ARGV elements, ENVIRON elements and the elements of an array created by split() or pat?

 split() that are numeric strings. The basic idea is that user input, and only user input,

 that looks numeric, should be treated that way.

 Octal and Hexadecimal Constants

 You may use C-style octal and hexadecimal constants in your AWK program source code. For

 example, the octal value 011 is equal to decimal 9, and the hexadecimal value 0x11 is

 equal to decimal 17.

 String Constants

 String constants in AWK are sequences of characters enclosed between double quotes (like

 "value"). Within strings, certain escape sequences are recognized, as in C. These are:

 \\ A literal backslash.

 \a The ?alert? character; usually the ASCII BEL character. Page 18/43

 \b Backspace.

 \f Form-feed.

 \n Newline.

 \r Carriage return.

 \t Horizontal tab.

 \v Vertical tab.

 \xhex digits

 The character represented by the string of hexadecimal digits following the \x. Up

 to two following hexadecimal digits are considered part of the escape sequence.

 E.g., "\x1B" is the ASCII ESC (escape) character.

 \ddd The character represented by the 1-, 2-, or 3-digit sequence of octal digits. E.g.,

 "\033" is the ASCII ESC (escape) character.

 \c The literal character c.

 In compatibility mode, the characters represented by octal and hexadecimal escape se?

 quences are treated literally when used in regular expression constants. Thus, /a\52b/ is

 equivalent to /a*b/.

 Regexp Constants

 A regular expression constant is a sequence of characters enclosed between forward slashes

 (like /value/). Regular expression matching is described more fully below; see Regular

 Expressions.

 The escape sequences described earlier may also be used inside constant regular expres?

 sions (e.g., /[\t\f\n\r\v]/ matches whitespace characters).

 Gawk provides strongly typed regular expression constants. These are written with a lead?

 ing @ symbol (like so: @/value/). Such constants may be assigned to scalars (variables,

 array elements) and passed to user-defined functions. Variables that have been so assigned

 have regular expression type.

PATTERNS AND ACTIONS

 AWK is a line-oriented language. The pattern comes first, and then the action. Action

 statements are enclosed in { and }. Either the pattern may be missing, or the action may

 be missing, but, of course, not both. If the pattern is missing, the action executes for

 every single record of input. A missing action is equivalent to

 { print }

 which prints the entire record. Page 19/43

 Comments begin with the # character, and continue until the end of the line. Empty lines

 may be used to separate statements. Normally, a statement ends with a newline, however,

 this is not the case for lines ending in a comma, {, ?, :, &&, or ||. Lines ending in do

 or else also have their statements automatically continued on the following line. In

 other cases, a line can be continued by ending it with a ?\?, in which case the newline is

 ignored. However, a ?\? after a # is not special.

 Multiple statements may be put on one line by separating them with a ?;?. This applies to

 both the statements within the action part of a pattern-action pair (the usual case), and

 to the pattern-action statements themselves.

 Patterns

 AWK patterns may be one of the following:

 BEGIN

 END

 BEGINFILE

 ENDFILE

 /regular expression/

 relational expression

 pattern && pattern

 pattern || pattern

 pattern ? pattern : pattern

 (pattern)

 ! pattern

 pattern1, pattern2

 BEGIN and END are two special kinds of patterns which are not tested against the input.

 The action parts of all BEGIN patterns are merged as if all the statements had been writ?

 ten in a single BEGIN rule. They are executed before any of the input is read. Simi?

 larly, all the END rules are merged, and executed when all the input is exhausted (or when

 an exit statement is executed). BEGIN and END patterns cannot be combined with other pat?

 terns in pattern expressions. BEGIN and END patterns cannot have missing action parts.

 BEGINFILE and ENDFILE are additional special patterns whose actions are executed before

 reading the first record of each command-line input file and after reading the last record

 of each file. Inside the BEGINFILE rule, the value of ERRNO is the empty string if the

 file was opened successfully. Otherwise, there is some problem with the file and the code Page 20/43

 should use nextfile to skip it. If that is not done, gawk produces its usual fatal error

 for files that cannot be opened.

 For /regular expression/ patterns, the associated statement is executed for each input

 record that matches the regular expression. Regular expressions are the same as those in

 egrep(1), and are summarized below.

 A relational expression may use any of the operators defined below in the section on ac?

 tions. These generally test whether certain fields match certain regular expressions.

 The &&, ||, and ! operators are logical AND, logical OR, and logical NOT, respectively,

 as in C. They do short-circuit evaluation, also as in C, and are used for combining more

 primitive pattern expressions. As in most languages, parentheses may be used to change

 the order of evaluation.

 The ?: operator is like the same operator in C. If the first pattern is true then the

 pattern used for testing is the second pattern, otherwise it is the third. Only one of

 the second and third patterns is evaluated.

 The pattern1, pattern2 form of an expression is called a range pattern. It matches all

 input records starting with a record that matches pattern1, and continuing until a record

 that matches pattern2, inclusive. It does not combine with any other sort of pattern ex?

 pression.

 Regular Expressions

 Regular expressions are the extended kind found in egrep. They are composed of characters

 as follows:

 c Matches the non-metacharacter c.

 \c Matches the literal character c.

 . Matches any character including newline.

 ^ Matches the beginning of a string.

 $ Matches the end of a string.

 [abc...] A character list: matches any of the characters abc.... You may include a

 range of characters by separating them with a dash. To include a literal dash

 in the list, put it first or last.

 [^abc...] A negated character list: matches any character except abc....

 r1|r2 Alternation: matches either r1 or r2.

 r1r2 Concatenation: matches r1, and then r2.

 r+ Matches one or more r's. Page 21/43

 r* Matches zero or more r's.

 r? Matches zero or one r's.

 (r) Grouping: matches r.

 r{n}

 r{n,}

 r{n,m} One or two numbers inside braces denote an interval expression. If there is

 one number in the braces, the preceding regular expression r is repeated n

 times. If there are two numbers separated by a comma, r is repeated n to m

 times. If there is one number followed by a comma, then r is repeated at least

 n times.

 \y Matches the empty string at either the beginning or the end of a word.

 \B Matches the empty string within a word.

 \< Matches the empty string at the beginning of a word.

 \> Matches the empty string at the end of a word.

 \s Matches any whitespace character.

 \S Matches any nonwhitespace character.

 \w Matches any word-constituent character (letter, digit, or underscore).

 \W Matches any character that is not word-constituent.

 \` Matches the empty string at the beginning of a buffer (string).

 \' Matches the empty string at the end of a buffer.

 The escape sequences that are valid in string constants (see String Constants) are also

 valid in regular expressions.

 Character classes are a feature introduced in the POSIX standard. A character class is a

 special notation for describing lists of characters that have a specific attribute, but

 where the actual characters themselves can vary from country to country and/or from char?

 acter set to character set. For example, the notion of what is an alphabetic character

 differs in the USA and in France.

 A character class is only valid in a regular expression inside the brackets of a character

 list. Character classes consist of [:, a keyword denoting the class, and :]. The charac?

 ter classes defined by the POSIX standard are:

 [:alnum:] Alphanumeric characters.

 [:alpha:] Alphabetic characters.

 [:blank:] Space or tab characters. Page 22/43

 [:cntrl:] Control characters.

 [:digit:] Numeric characters.

 [:graph:] Characters that are both printable and visible. (A space is printable, but not

 visible, while an a is both.)

 [:lower:] Lowercase alphabetic characters.

 [:print:] Printable characters (characters that are not control characters.)

 [:punct:] Punctuation characters (characters that are not letter, digits, control charac?

 ters, or space characters).

 [:space:] Space characters (such as space, tab, and formfeed, to name a few).

 [:upper:] Uppercase alphabetic characters.

 [:xdigit:] Characters that are hexadecimal digits.

 For example, before the POSIX standard, to match alphanumeric characters, you would have

 had to write /[A-Za-z0-9]/. If your character set had other alphabetic characters in it,

 this would not match them, and if your character set collated differently from ASCII, this

 might not even match the ASCII alphanumeric characters. With the POSIX character classes,

 you can write /[[:alnum:]]/, and this matches the alphabetic and numeric characters in

 your character set, no matter what it is.

 Two additional special sequences can appear in character lists. These apply to non-ASCII

 character sets, which can have single symbols (called collating elements) that are repre?

 sented with more than one character, as well as several characters that are equivalent for

 collating, or sorting, purposes. (E.g., in French, a plain ?e? and a grave-accented ?`?

 are equivalent.)

 Collating Symbols

 A collating symbol is a multi-character collating element enclosed in [. and .].

 For example, if ch is a collating element, then [[.ch.]] is a regular expression

 that matches this collating element, while [ch] is a regular expression that

 matches either c or h.

 Equivalence Classes

 An equivalence class is a locale-specific name for a list of characters that are

 equivalent. The name is enclosed in [= and =]. For example, the name e might be

 used to represent all of ?e?, ???, and ?`?. In this case, [[=e=]] is a regular ex?

 pression that matches any of e, ?, or `.

 These features are very valuable in non-English speaking locales. The library functions Page 23/43

 that gawk uses for regular expression matching currently only recognize POSIX character

 classes; they do not recognize collating symbols or equivalence classes.

 The \y, \B, \<, \>, \s, \S, \w, \W, \`, and \' operators are specific to gawk; they are

 extensions based on facilities in the GNU regular expression libraries.

 The various command line options control how gawk interprets characters in regular expres?

 sions.

 No options

 In the default case, gawk provides all the facilities of POSIX regular expressions

 and the GNU regular expression operators described above.

 --posix

 Only POSIX regular expressions are supported, the GNU operators are not special.

 (E.g., \w matches a literal w).

 --traditional

 Traditional UNIX awk regular expressions are matched. The GNU operators are not

 special, and interval expressions are not available. Characters described by octal

 and hexadecimal escape sequences are treated literally, even if they represent reg?

 ular expression metacharacters.

 --re-interval

 Allow interval expressions in regular expressions, even if --traditional has been

 provided.

 Actions

 Action statements are enclosed in braces, { and }. Action statements consist of the usual

 assignment, conditional, and looping statements found in most languages. The operators,

 control statements, and input/output statements available are patterned after those in C.

 Operators

 The operators in AWK, in order of decreasing precedence, are:

 (...) Grouping

 $ Field reference.

 ++ -- Increment and decrement, both prefix and postfix.

 ^ Exponentiation (** may also be used, and **= for the assignment operator).

 + - ! Unary plus, unary minus, and logical negation.

 * / % Multiplication, division, and modulus.

 + - Addition and subtraction. Page 24/43

 space String concatenation.

 | |& Piped I/O for getline, print, and printf.

 < > <= >= == !=

 The regular relational operators.

 ~ !~ Regular expression match, negated match. NOTE: Do not use a constant regular

 expression (/foo/) on the left-hand side of a ~ or !~. Only use one on the

 right-hand side. The expression /foo/ ~ exp has the same meaning as (($0 ~

 /foo/) ~ exp). This is usually not what you want.

 in Array membership.

 && Logical AND.

 || Logical OR.

 ?: The C conditional expression. This has the form expr1 ? expr2 : expr3. If

 expr1 is true, the value of the expression is expr2, otherwise it is expr3.

 Only one of expr2 and expr3 is evaluated.

 = += -= *= /= %= ^=

 Assignment. Both absolute assignment (var = value) and operator-assignment

 (the other forms) are supported.

 Control Statements

 The control statements are as follows:

 if (condition) statement [else statement]

 while (condition) statement

 do statement while (condition)

 for (expr1; expr2; expr3) statement

 for (var in array) statement

 break

 continue

 delete array[index]

 delete array

 exit [expression]

 { statements }

 switch (expression) {

 case value|regex : statement

 ... Page 25/43

 [default: statement]

 }

 I/O Statements

 The input/output statements are as follows:

 close(file [, how]) Close file, pipe or coprocess. The optional how should only be used

 when closing one end of a two-way pipe to a coprocess. It must be a

 string value, either "to" or "from".

 getline Set $0 from the next input record; set NF, NR, FNR, RT.

 getline <file Set $0 from the next record of file; set NF, RT.

 getline var Set var from the next input record; set NR, FNR, RT.

 getline var <file Set var from the next record of file; set RT.

 command | getline [var]

 Run command, piping the output either into $0 or var, as above, and

 RT.

 command |& getline [var]

 Run command as a coprocess piping the output either into $0 or var,

 as above, and RT. Coprocesses are a gawk extension. (The command

 can also be a socket. See the subsection Special File Names, be?

 low.)

 next Stop processing the current input record. Read the next input

 record and start processing over with the first pattern in the AWK

 program. Upon reaching the end of the input data, execute any END

 rule(s).

 nextfile Stop processing the current input file. The next input record read

 comes from the next input file. Update FILENAME and ARGIND, reset

 FNR to 1, and start processing over with the first pattern in the

 AWK program. Upon reaching the end of the input data, execute any

 ENDFILE and END rule(s).

 print Print the current record. The output record is terminated with the

 value of ORS.

 print expr-list Print expressions. Each expression is separated by the value of

 OFS. The output record is terminated with the value of ORS.

 print expr-list >file Print expressions on file. Each expression is separated by the Page 26/43

 value of OFS. The output record is terminated with the value of

 ORS.

 printf fmt, expr-list Format and print. See The printf Statement, below.

 printf fmt, expr-list >file

 Format and print on file.

 system(cmd-line) Execute the command cmd-line, and return the exit status. (This may

 not be available on non-POSIX systems.) See GAWK: Effective AWK

 Programming for the full details on the exit status.

 fflush([file]) Flush any buffers associated with the open output file or pipe file.

 If file is missing or if it is the null string, then flush all open

 output files and pipes.

 Additional output redirections are allowed for print and printf.

 print ... >> file

 Append output to the file.

 print ... | command

 Write on a pipe.

 print ... |& command

 Send data to a coprocess or socket. (See also the subsection Special File Names,

 below.)

 The getline command returns 1 on success, zero on end of file, and -1 on an error. If the

 errno(3) value indicates that the I/O operation may be retried, and PROCINFO["input",

 "RETRY"] is set, then -2 is returned instead of -1, and further calls to getline may be

 attempted. Upon an error, ERRNO is set to a string describing the problem.

 NOTE: Failure in opening a two-way socket results in a non-fatal error being returned to

 the calling function. If using a pipe, coprocess, or socket to getline, or from print or

 printf within a loop, you must use close() to create new instances of the command or

 socket. AWK does not automatically close pipes, sockets, or coprocesses when they return

 EOF.

 The printf Statement

 The AWK versions of the printf statement and sprintf() function (see below) accept the

 following conversion specification formats:

 %a, %A A floating point number of the form [-]0xh.hhhhp+-dd (C99 hexadecimal floating

 point format). For %A, uppercase letters are used instead of lowercase ones. Page 27/43

 %c A single character. If the argument used for %c is numeric, it is treated as a

 character and printed. Otherwise, the argument is assumed to be a string, and the

 only first character of that string is printed.

 %d, %i A decimal number (the integer part).

 %e, %E A floating point number of the form [-]d.dddddde[+-]dd. The %E format uses E in?

 stead of e.

 %f, %F A floating point number of the form [-]ddd.dddddd. If the system library supports

 it, %F is available as well. This is like %f, but uses capital letters for special

 ?not a number? and ?infinity? values. If %F is not available, gawk uses %f.

 %g, %G Use %e or %f conversion, whichever is shorter, with nonsignificant zeros sup?

 pressed. The %G format uses %E instead of %e.

 %o An unsigned octal number (also an integer).

 %u An unsigned decimal number (again, an integer).

 %s A character string.

 %x, %X An unsigned hexadecimal number (an integer). The %X format uses ABCDEF instead of

 abcdef.

 %% A single % character; no argument is converted.

 Optional, additional parameters may lie between the % and the control letter:

 count$ Use the count'th argument at this point in the formatting. This is called a posi?

 tional specifier and is intended primarily for use in translated versions of format

 strings, not in the original text of an AWK program. It is a gawk extension.

 - The expression should be left-justified within its field.

 space For numeric conversions, prefix positive values with a space, and negative values

 with a minus sign.

 + The plus sign, used before the width modifier (see below), says to always supply a

 sign for numeric conversions, even if the data to be formatted is positive. The +

 overrides the space modifier.

 # Use an ?alternate form? for certain control letters. For %o, supply a leading

 zero. For %x, and %X, supply a leading 0x or 0X for a nonzero result. For %e, %E,

 %f and %F, the result always contains a decimal point. For %g, and %G, trailing

 zeros are not removed from the result.

 0 A leading 0 (zero) acts as a flag, indicating that output should be padded with ze?

 roes instead of spaces. This applies only to the numeric output formats. This Page 28/43

 flag only has an effect when the field width is wider than the value to be printed.

 ' A single quote character instructs gawk to insert the locale's thousands-separator

 character into decimal numbers, and to also use the locale's decimal point charac?

 ter with floating point formats. This requires correct locale support in the C li?

 brary and in the definition of the current locale.

 width The field should be padded to this width. The field is normally padded with spa?

 ces. With the 0 flag, it is padded with zeroes.

 .prec A number that specifies the precision to use when printing. For the %e, %E, %f and

 %F, formats, this specifies the number of digits you want printed to the right of

 the decimal point. For the %g, and %G formats, it specifies the maximum number of

 significant digits. For the %d, %i, %o, %u, %x, and %X formats, it specifies the

 minimum number of digits to print. For the %s format, it specifies the maximum

 number of characters from the string that should be printed.

 The dynamic width and prec capabilities of the ISO C printf() routines are supported. A *

 in place of either the width or prec specifications causes their values to be taken from

 the argument list to printf or sprintf(). To use a positional specifier with a dynamic

 width or precision, supply the count$ after the * in the format string. For example,

 "%3$*2$.*1$s".

 Special File Names

 When doing I/O redirection from either print or printf into a file, or via getline from a

 file, gawk recognizes certain special filenames internally. These filenames allow access

 to open file descriptors inherited from gawk's parent process (usually the shell). These

 file names may also be used on the command line to name data files. The filenames are:

 - The standard input.

 /dev/stdin The standard input.

 /dev/stdout The standard output.

 /dev/stderr The standard error output.

 /dev/fd/n The file associated with the open file descriptor n.

 These are particularly useful for error messages. For example:

 print "You blew it!" > "/dev/stderr"

 whereas you would otherwise have to use

 print "You blew it!" | "cat 1>&2"

 The following special filenames may be used with the |& coprocess operator for creating Page 29/43

 TCP/IP network connections:

 /inet/tcp/lport/rhost/rport

 /inet4/tcp/lport/rhost/rport

 /inet6/tcp/lport/rhost/rport

 Files for a TCP/IP connection on local port lport to remote host rhost on remote

 port rport. Use a port of 0 to have the system pick a port. Use /inet4 to force

 an IPv4 connection, and /inet6 to force an IPv6 connection. Plain /inet uses the

 system default (most likely IPv4). Usable only with the |& two-way I/O operator.

 /inet/udp/lport/rhost/rport

 /inet4/udp/lport/rhost/rport

 /inet6/udp/lport/rhost/rport

 Similar, but use UDP/IP instead of TCP/IP.

 Numeric Functions

 AWK has the following built-in arithmetic functions:

 atan2(y, x) Return the arctangent of y/x in radians.

 cos(expr) Return the cosine of expr, which is in radians.

 exp(expr) The exponential function.

 int(expr) Truncate to integer.

 log(expr) The natural logarithm function.

 rand() Return a random number N, between zero and one, such that 0 ? N < 1.

 sin(expr) Return the sine of expr, which is in radians.

 sqrt(expr) Return the square root of expr.

 srand([expr]) Use expr as the new seed for the random number generator. If no expr is

 provided, use the time of day. Return the previous seed for the random num?

 ber generator.

 String Functions

 Gawk has the following built-in string functions:

 asort(s [, d [, how]]) Return the number of elements in the source array s. Sort the

 contents of s using gawk's normal rules for comparing values, and

 replace the indices of the sorted values s with sequential inte?

 gers starting with 1. If the optional destination array d is spec?

 ified, first duplicate s into d, and then sort d, leaving the in?

 dices of the source array s unchanged. The optional string how Page 30/43

 controls the direction and the comparison mode. Valid values for

 how are any of the strings valid for PROCINFO["sorted_in"]. It

 can also be the name of a user-defined comparison function as de?

 scribed in PROCINFO["sorted_in"].

 asorti(s [, d [, how]])

 Return the number of elements in the source array s. The behavior

 is the same as that of asort(), except that the array indices are

 used for sorting, not the array values. When done, the array is

 indexed numerically, and the values are those of the original in?

 dices. The original values are lost; thus provide a second array

 if you wish to preserve the original. The purpose of the optional

 string how is the same as described previously for asort().

 gensub(r, s, h [, t]) Search the target string t for matches of the regular expression

 r. If h is a string beginning with g or G, then replace all

 matches of r with s. Otherwise, h is a number indicating which

 match of r to replace. If t is not supplied, use $0 instead.

 Within the replacement text s, the sequence \n, where n is a digit

 from 1 to 9, may be used to indicate just the text that matched

 the n'th parenthesized subexpression. The sequence \0 represents

 the entire matched text, as does the character &. Unlike sub()

 and gsub(), the modified string is returned as the result of the

 function, and the original target string is not changed.

 gsub(r, s [, t]) For each substring matching the regular expression r in the string

 t, substitute the string s, and return the number of substitu?

 tions. If t is not supplied, use $0. An & in the replacement

 text is replaced with the text that was actually matched. Use \&

 to get a literal &. (This must be typed as "\\&"; see GAWK: Ef?

 fective AWK Programming for a fuller discussion of the rules for

 ampersands and backslashes in the replacement text of sub(),

 gsub(), and gensub().)

 index(s, t) Return the index of the string t in the string s, or zero if t is

 not present. (This implies that character indices start at one.)

 It is a fatal error to use a regexp constant for t. Page 31/43

 length([s]) Return the length of the string s, or the length of $0 if s is not

 supplied. As a non-standard extension, with an array argument,

 length() returns the number of elements in the array.

 match(s, r [, a]) Return the position in s where the regular expression r occurs, or

 zero if r is not present, and set the values of RSTART and

 RLENGTH. Note that the argument order is the same as for the ~

 operator: str ~ re. If array a is provided, a is cleared and then

 elements 1 through n are filled with the portions of s that match

 the corresponding parenthesized subexpression in r. The zero'th

 element of a contains the portion of s matched by the entire regu?

 lar expression r. Subscripts a[n, "start"], and a[n, "length"]

 provide the starting index in the string and length respectively,

 of each matching substring.

 patsplit(s, a [, r [, seps]])

 Split the string s into the array a and the separators array seps

 on the regular expression r, and return the number of fields. El?

 ement values are the portions of s that matched r. The value of

 seps[i] is the possibly null separator that appeared after a[i].

 The value of seps[0] is the possibly null leading separator. If r

 is omitted, FPAT is used instead. The arrays a and seps are

 cleared first. Splitting behaves identically to field splitting

 with FPAT, described above.

 split(s, a [, r [, seps]])

 Split the string s into the array a and the separators array seps

 on the regular expression r, and return the number of fields. If

 r is omitted, FS is used instead. The arrays a and seps are

 cleared first. seps[i] is the field separator matched by r be?

 tween a[i] and a[i+1]. If r is a single space, then leading

 whitespace in s goes into the extra array element seps[0] and

 trailing whitespace goes into the extra array element seps[n],

 where n is the return value of split(s, a, r, seps). Splitting

 behaves identically to field splitting, described above. In par?

 ticular, if r is a single-character string, that string acts as Page 32/43

 the separator, even if it happens to be a regular expression

 metacharacter.

 sprintf(fmt, expr-list) Print expr-list according to fmt, and return the resulting string.

 strtonum(str) Examine str, and return its numeric value. If str begins with a

 leading 0, treat it as an octal number. If str begins with a

 leading 0x or 0X, treat it as a hexadecimal number. Otherwise,

 assume it is a decimal number.

 sub(r, s [, t]) Just like gsub(), but replace only the first matching substring.

 Return either zero or one.

 substr(s, i [, n]) Return the at most n-character substring of s starting at i. If n

 is omitted, use the rest of s.

 tolower(str) Return a copy of the string str, with all the uppercase characters

 in str translated to their corresponding lowercase counterparts.

 Non-alphabetic characters are left unchanged.

 toupper(str) Return a copy of the string str, with all the lowercase characters

 in str translated to their corresponding uppercase counterparts.

 Non-alphabetic characters are left unchanged.

 Gawk is multibyte aware. This means that index(), length(), substr() and match() all work

 in terms of characters, not bytes.

 Time Functions

 Since one of the primary uses of AWK programs is processing log files that contain time

 stamp information, gawk provides the following functions for obtaining time stamps and

 formatting them.

 mktime(datespec [, utc-flag])

 Turn datespec into a time stamp of the same form as returned by systime(), and

 return the result. The datespec is a string of the form YYYY MM DD HH MM SS[

 DST]. The contents of the string are six or seven numbers representing respec?

 tively the full year including century, the month from 1 to 12, the day of the

 month from 1 to 31, the hour of the day from 0 to 23, the minute from 0 to 59,

 the second from 0 to 60, and an optional daylight saving flag. The values of

 these numbers need not be within the ranges specified; for example, an hour of

 -1 means 1 hour before midnight. The origin-zero Gregorian calendar is assumed,

 with year 0 preceding year 1 and year -1 preceding year 0. If utc-flag is Page 33/43

 present and is non-zero or non-null, the time is assumed to be in the UTC time

 zone; otherwise, the time is assumed to be in the local time zone. If the DST

 daylight saving flag is positive, the time is assumed to be daylight saving

 time; if zero, the time is assumed to be standard time; and if negative (the de?

 fault), mktime() attempts to determine whether daylight saving time is in effect

 for the specified time. If datespec does not contain enough elements or if the

 resulting time is out of range, mktime() returns -1.

 strftime([format [, timestamp[, utc-flag]]])

 Format timestamp according to the specification in format. If utc-flag is

 present and is non-zero or non-null, the result is in UTC, otherwise the result

 is in local time. The timestamp should be of the same form as returned by sys?

 time(). If timestamp is missing, the current time of day is used. If format is

 missing, a default format equivalent to the output of date(1) is used. The de?

 fault format is available in PROCINFO["strftime"]. See the specification for

 the strftime() function in ISO C for the format conversions that are guaranteed

 to be available.

 systime() Return the current time of day as the number of seconds since the Epoch

 (1970-01-01 00:00:00 UTC on POSIX systems).

 Bit Manipulations Functions

 Gawk supplies the following bit manipulation functions. They work by converting double-

 precision floating point values to uintmax_t integers, doing the operation, and then con?

 verting the result back to floating point.

 NOTE: Passing negative operands to any of these functions causes a fatal error.

 The functions are:

 and(v1, v2 [, ...]) Return the bitwise AND of the values provided in the argument list.

 There must be at least two.

 compl(val) Return the bitwise complement of val.

 lshift(val, count) Return the value of val, shifted left by count bits.

 or(v1, v2 [, ...]) Return the bitwise OR of the values provided in the argument list.

 There must be at least two.

 rshift(val, count) Return the value of val, shifted right by count bits.

 xor(v1, v2 [, ...]) Return the bitwise XOR of the values provided in the argument list.

 There must be at least two. Page 34/43

 Type Functions

 The following functions provide type related information about their arguments.

 isarray(x) Return true if x is an array, false otherwise. This function is mainly for use

 with the elements of multidimensional arrays and with function parameters.

 typeof(x) Return a string indicating the type of x. The string will be one of "array",

 "number", "regexp", "string", "strnum", "unassigned", or "undefined".

 Internationalization Functions

 The following functions may be used from within your AWK program for translating strings

 at run-time. For full details, see GAWK: Effective AWK Programming.

 bindtextdomain(directory [, domain])

 Specify the directory where gawk looks for the .gmo files, in case they will not or

 cannot be placed in the ``standard'' locations (e.g., during testing). It returns

 the directory where domain is ``bound.''

 The default domain is the value of TEXTDOMAIN. If directory is the null string

 (""), then bindtextdomain() returns the current binding for the given domain.

 dcgettext(string [, domain [, category]])

 Return the translation of string in text domain domain for locale category cate?

 gory. The default value for domain is the current value of TEXTDOMAIN. The de?

 fault value for category is "LC_MESSAGES".

 If you supply a value for category, it must be a string equal to one of the known

 locale categories described in GAWK: Effective AWK Programming. You must also sup?

 ply a text domain. Use TEXTDOMAIN if you want to use the current domain.

 dcngettext(string1, string2, number [, domain [, category]])

 Return the plural form used for number of the translation of string1 and string2 in

 text domain domain for locale category category. The default value for domain is

 the current value of TEXTDOMAIN. The default value for category is "LC_MESSAGES".

 If you supply a value for category, it must be a string equal to one of the known

 locale categories described in GAWK: Effective AWK Programming. You must also sup?

 ply a text domain. Use TEXTDOMAIN if you want to use the current domain.

USER-DEFINED FUNCTIONS

 Functions in AWK are defined as follows:

 function name(parameter list) { statements }

 Functions execute when they are called from within expressions in either patterns or ac? Page 35/43

 tions. Actual parameters supplied in the function call are used to instantiate the formal

 parameters declared in the function. Arrays are passed by reference, other variables are

 passed by value.

 Since functions were not originally part of the AWK language, the provision for local

 variables is rather clumsy: They are declared as extra parameters in the parameter list.

 The convention is to separate local variables from real parameters by extra spaces in the

 parameter list. For example:

 function f(p, q, a, b) # a and b are local

 {

 ...

 }

 /abc/ { ... ; f(1, 2) ; ... }

 The left parenthesis in a function call is required to immediately follow the function

 name, without any intervening whitespace. This avoids a syntactic ambiguity with the con?

 catenation operator. This restriction does not apply to the built-in functions listed

 above.

 Functions may call each other and may be recursive. Function parameters used as local

 variables are initialized to the null string and the number zero upon function invocation.

 Use return expr to return a value from a function. The return value is undefined if no

 value is provided, or if the function returns by ?falling off? the end.

 As a gawk extension, functions may be called indirectly. To do this, assign the name of

 the function to be called, as a string, to a variable. Then use the variable as if it

 were the name of a function, prefixed with an @ sign, like so:

 function myfunc()

 {

 print "myfunc called"

 ...

 }

 { ...

 the_func = "myfunc"

 @the_func() # call through the_func to myfunc

 ...

 } Page 36/43

 As of version 4.1.2, this works with user-defined functions, built-in functions, and ex?

 tension functions.

 If --lint has been provided, gawk warns about calls to undefined functions at parse time,

 instead of at run time. Calling an undefined function at run time is a fatal error.

 The word func may be used in place of function, although this is deprecated.

DYNAMICALLY LOADING NEW FUNCTIONS

 You can dynamically add new functions written in C or C++ to the running gawk interpreter

 with the @load statement. The full details are beyond the scope of this manual page; see

 GAWK: Effective AWK Programming.

SIGNALS

 The gawk profiler accepts two signals. SIGUSR1 causes it to dump a profile and function

 call stack to the profile file, which is either awkprof.out, or whatever file was named

 with the --profile option. It then continues to run. SIGHUP causes gawk to dump the pro?

 file and function call stack and then exit.

INTERNATIONALIZATION

 String constants are sequences of characters enclosed in double quotes. In non-English

 speaking environments, it is possible to mark strings in the AWK program as requiring

 translation to the local natural language. Such strings are marked in the AWK program with

 a leading underscore (?_?). For example,

 gawk 'BEGIN { print "hello, world" }'

 always prints hello, world. But,

 gawk 'BEGIN { print _"hello, world" }'

 might print bonjour, monde in France.

 There are several steps involved in producing and running a localizable AWK program.

 1. Add a BEGIN action to assign a value to the TEXTDOMAIN variable to set the text domain

 to a name associated with your program:

 BEGIN { TEXTDOMAIN = "myprog" }

 This allows gawk to find the .gmo file associated with your program. Without this

 step, gawk uses the messages text domain, which likely does not contain translations

 for your program.

 2. Mark all strings that should be translated with leading underscores.

 3. If necessary, use the dcgettext() and/or bindtextdomain() functions in your program,

 as appropriate. Page 37/43

 4. Run gawk --gen-pot -f myprog.awk > myprog.pot to generate a .pot file for your pro?

 gram.

 5. Provide appropriate translations, and build and install the corresponding .gmo files.

 The internationalization features are described in full detail in GAWK: Effective AWK Pro?

 gramming.

POSIX COMPATIBILITY

 A primary goal for gawk is compatibility with the POSIX standard, as well as with the lat?

 est version of Brian Kernighan's awk. To this end, gawk incorporates the following user

 visible features which are not described in the AWK book, but are part of the Brian

 Kernighan's version of awk, and are in the POSIX standard.

 The book indicates that command line variable assignment happens when awk would otherwise

 open the argument as a file, which is after the BEGIN rule is executed. However, in ear?

 lier implementations, when such an assignment appeared before any file names, the assign?

 ment would happen before the BEGIN rule was run. Applications came to depend on this

 ?feature.? When awk was changed to match its documentation, the -v option for assigning

 variables before program execution was added to accommodate applications that depended

 upon the old behavior. (This feature was agreed upon by both the Bell Laboratories devel?

 opers and the GNU developers.)

 When processing arguments, gawk uses the special option ?--? to signal the end of argu?

 ments. In compatibility mode, it warns about but otherwise ignores undefined options. In

 normal operation, such arguments are passed on to the AWK program for it to process.

 The AWK book does not define the return value of srand(). The POSIX standard has it re?

 turn the seed it was using, to allow keeping track of random number sequences. Therefore

 srand() in gawk also returns its current seed.

 Other features are: The use of multiple -f options (from MKS awk); the ENVIRON array; the

 \a, and \v escape sequences (done originally in gawk and fed back into the Bell Laborato?

 ries version); the tolower() and toupper() built-in functions (from the Bell Laboratories

 version); and the ISO C conversion specifications in printf (done first in the Bell Labo?

 ratories version).

HISTORICAL FEATURES

 There is one feature of historical AWK implementations that gawk supports: It is possible

 to call the length() built-in function not only with no argument, but even without paren?

 theses! Thus, Page 38/43

 a = length # Holy Algol 60, Batman!

 is the same as either of

 a = length()

 a = length($0)

 Using this feature is poor practice, and gawk issues a warning about its use if --lint is

 specified on the command line.

GNU EXTENSIONS

 Gawk has a too-large number of extensions to POSIX awk. They are described in this sec?

 tion. All the extensions described here can be disabled by invoking gawk with the --tra?

 ditional or --posix options.

 The following features of gawk are not available in POSIX awk.

 ? No path search is performed for files named via the -f option. Therefore the AWKPATH

 environment variable is not special.

 ? There is no facility for doing file inclusion (gawk's @include mechanism).

 ? There is no facility for dynamically adding new functions written in C (gawk's @load

 mechanism).

 ? The \x escape sequence.

 ? The ability to continue lines after ? and :.

 ? Octal and hexadecimal constants in AWK programs.

 ? The ARGIND, BINMODE, ERRNO, LINT, PREC, ROUNDMODE, RT and TEXTDOMAIN variables are not

 special.

 ? The IGNORECASE variable and its side-effects are not available.

 ? The FIELDWIDTHS variable and fixed-width field splitting.

 ? The FPAT variable and field splitting based on field values.

 ? The FUNCTAB, SYMTAB, and PROCINFO arrays are not available.

 ? The use of RS as a regular expression.

 ? The special file names available for I/O redirection are not recognized.

 ? The |& operator for creating coprocesses.

 ? The BEGINFILE and ENDFILE special patterns are not available.

 ? The ability to split out individual characters using the null string as the value of FS,

 and as the third argument to split().

 ? An optional fourth argument to split() to receive the separator texts.

 ? The optional second argument to the close() function. Page 39/43

 ? The optional third argument to the match() function.

 ? The ability to use positional specifiers with printf and sprintf().

 ? The ability to pass an array to length().

 ? The and(), asort(), asorti(), bindtextdomain(), compl(), dcgettext(), dcngettext(), gen?

 sub(), lshift(), mktime(), or(), patsplit(), rshift(), strftime(), strtonum(), systime()

 and xor() functions.

 ? Localizable strings.

 ? Non-fatal I/O.

 ? Retryable I/O.

 The AWK book does not define the return value of the close() function. Gawk's close() re?

 turns the value from fclose(3), or pclose(3), when closing an output file or pipe, respec?

 tively. It returns the process's exit status when closing an input pipe. The return

 value is -1 if the named file, pipe or coprocess was not opened with a redirection.

 When gawk is invoked with the --traditional option, if the fs argument to the -F option is

 ?t?, then FS is set to the tab character. Note that typing gawk -F\t ... simply causes

 the shell to quote the ?t,? and does not pass ?\t? to the -F option. Since this is a

 rather ugly special case, it is not the default behavior. This behavior also does not oc?

 cur if --posix has been specified. To really get a tab character as the field separator,

 it is best to use single quotes: gawk -F'\t'

ENVIRONMENT VARIABLES

 The AWKPATH environment variable can be used to provide a list of directories that gawk

 searches when looking for files named via the -f, --file, -i and --include options, and

 the @include directive. If the initial search fails, the path is searched again after ap?

 pending .awk to the filename.

 The AWKLIBPATH environment variable can be used to provide a list of directories that gawk

 searches when looking for files named via the -l and --load options.

 The GAWK_READ_TIMEOUT environment variable can be used to specify a timeout in millisec?

 onds for reading input from a terminal, pipe or two-way communication including sockets.

 For connection to a remote host via socket, GAWK_SOCK_RETRIES controls the number of re?

 tries, and GAWK_MSEC_SLEEP the interval between retries. The interval is in milliseconds.

 On systems that do not support usleep(3), the value is rounded up to an integral number of

 seconds.

 If POSIXLY_CORRECT exists in the environment, then gawk behaves exactly as if --posix had Page 40/43

 been specified on the command line. If --lint has been specified, gawk issues a warning

 message to this effect.

EXIT STATUS

 If the exit statement is used with a value, then gawk exits with the numeric value given

 to it.

 Otherwise, if there were no problems during execution, gawk exits with the value of the C

 constant EXIT_SUCCESS. This is usually zero.

 If an error occurs, gawk exits with the value of the C constant EXIT_FAILURE. This is

 usually one.

 If gawk exits because of a fatal error, the exit status is 2. On non-POSIX systems, this

 value may be mapped to EXIT_FAILURE.

VERSION INFORMATION

 This man page documents gawk, version 5.1.

AUTHORS

 The original version of UNIX awk was designed and implemented by Alfred Aho, Peter Wein?

 berger, and Brian Kernighan of Bell Laboratories. Brian Kernighan continues to maintain

 and enhance it.

 Paul Rubin and Jay Fenlason, of the Free Software Foundation, wrote gawk, to be compatible

 with the original version of awk distributed in Seventh Edition UNIX. John Woods contrib?

 uted a number of bug fixes. David Trueman, with contributions from Arnold Robbins, made

 gawk compatible with the new version of UNIX awk. Arnold Robbins is the current main?

 tainer.

 See GAWK: Effective AWK Programming for a full list of the contributors to gawk and its

 documentation.

 See the README file in the gawk distribution for up-to-date information about maintainers

 and which ports are currently supported.

BUG REPORTS

 If you find a bug in gawk, please send electronic mail to bug-gawk@gnu.org. Please in?

 clude your operating system and its revision, the version of gawk (from gawk --version),

 which C compiler you used to compile it, and a test program and data that are as small as

 possible for reproducing the problem.

 Before sending a bug report, please do the following things. First, verify that you have

 the latest version of gawk. Many bugs (usually subtle ones) are fixed at each release, Page 41/43

 and if yours is out of date, the problem may already have been solved. Second, please see

 if setting the environment variable LC_ALL to LC_ALL=C causes things to behave as you ex?

 pect. If so, it's a locale issue, and may or may not really be a bug. Finally, please

 read this man page and the reference manual carefully to be sure that what you think is a

 bug really is, instead of just a quirk in the language.

 Whatever you do, do NOT post a bug report in comp.lang.awk. While the gawk developers oc?

 casionally read this newsgroup, posting bug reports there is an unreliable way to report

 bugs. Similarly, do NOT use a web forum (such as Stack Overflow) for reporting bugs. In?

 stead, please use the electronic mail addresses given above. Really.

 If you're using a GNU/Linux or BSD-based system, you may wish to submit a bug report to

 the vendor of your distribution. That's fine, but please send a copy to the official

 email address as well, since there's no guarantee that the bug report will be forwarded to

 the gawk maintainer.

BUGS

 The -F option is not necessary given the command line variable assignment feature; it re?

 mains only for backwards compatibility.

SEE ALSO

 egrep(1), sed(1), getpid(2), getppid(2), getpgrp(2), getuid(2), geteuid(2), getgid(2),

 getegid(2), getgroups(2), printf(3), strftime(3), usleep(3)

 The AWK Programming Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Ad?

 dison-Wesley, 1988. ISBN 0-201-07981-X.

 GAWK: Effective AWK Programming, Edition 5.1, shipped with the gawk source. The current

 version of this document is available online at https://www.gnu.org/software/gawk/manual.

 The GNU gettext documentation, available online at https://www.gnu.org/software/gettext.

EXAMPLES

 Print and sort the login names of all users:

 BEGIN { FS = ":" }

 { print $1 | "sort" }

 Count lines in a file:

 { nlines++ }

 END { print nlines }

 Precede each line by its number in the file:

 { print FNR, $0 } Page 42/43

 Concatenate and line number (a variation on a theme):

 { print NR, $0 }

 Run an external command for particular lines of data:

 tail -f access_log |

 awk '/myhome.html/ { system("nmap " $1 ">> logdir/myhome.html") }'

ACKNOWLEDGEMENTS

 Brian Kernighan provided valuable assistance during testing and debugging. We thank him.

COPYING PERMISSIONS

 Copyright ? 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2001, 2002, 2003,

 2004, 2005, 2007, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020,

 Free Software Foundation, Inc.

 Permission is granted to make and distribute verbatim copies of this manual page provided

 the copyright notice and this permission notice are preserved on all copies.

 Permission is granted to copy and distribute modified versions of this manual page under

 the conditions for verbatim copying, provided that the entire resulting derived work is

 distributed under the terms of a permission notice identical to this one.

 Permission is granted to copy and distribute translations of this manual page into another

 language, under the above conditions for modified versions, except that this permission

 notice may be stated in a translation approved by the Foundation.

Free Software Foundation Mar 23 2020 GAWK(1)

Page 43/43

