
Rocky Enterprise Linux 9.2 Manual Pages on command 'arm_fadvise64_64.2'

$ man arm_fadvise64_64.2

POSIX_FADVISE(2)                    Linux Programmer's Manual                    POSIX_FADVISE(2)

NAME

       posix_fadvise - predeclare an access pattern for file data

SYNOPSIS

       #include <fcntl.h>

       int posix_fadvise(int fd, off_t offset, off_t len, int advice);

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       posix_fadvise():

           _POSIX_C_SOURCE >= 200112L

DESCRIPTION

       Programs  can  use  posix_fadvise() to announce an intention to access file data in a spe?

       cific pattern in the future, thus allowing the kernel  to  perform  appropriate  optimiza?

       tions.

       The advice applies to a (not necessarily existent) region starting at offset and extending

       for len bytes (or until the end of the file if len is 0) within the file  referred  to  by

       fd.   The advice is not binding; it merely constitutes an expectation on behalf of the ap?

       plication.

       Permissible values for advice include:

       POSIX_FADV_NORMAL

              Indicates that the application has no advice to give about its access  pattern  for

              the  specified  data.   If no advice is given for an open file, this is the default

              assumption.

       POSIX_FADV_SEQUENTIAL Page 1/4



              The application expects to access the specified data sequentially (with lower  off?

              sets read before higher ones).

       POSIX_FADV_RANDOM

              The specified data will be accessed in random order.

       POSIX_FADV_NOREUSE

              The specified data will be accessed only once.

              In   kernels   before   2.6.18,   POSIX_FADV_NOREUSE  had  the  same  semantics  as

              POSIX_FADV_WILLNEED.  This was probably a bug; since kernel 2.6.18, this flag is  a

              no-op.

       POSIX_FADV_WILLNEED

              The specified data will be accessed in the near future.

              POSIX_FADV_WILLNEED  initiates  a nonblocking read of the specified region into the

              page cache.  The amount of data read may be decreased by the  kernel  depending  on

              virtual memory load.  (A few megabytes will usually be fully satisfied, and more is

              rarely useful.)

       POSIX_FADV_DONTNEED

              The specified data will not be accessed in the near future.

              POSIX_FADV_DONTNEED attempts to free cached pages associated with the specified re?

              gion.  This is useful, for example, while streaming large files.  A program may pe?

              riodically request the kernel to free cached data that has already  been  used,  so

              that more useful cached pages are not discarded instead.

              Requests to discard partial pages are ignored.  It is preferable to preserve needed

              data than discard unneeded data.  If the application requires that data be  consid?

              ered for discarding, then offset and len must be page-aligned.

              The  implementation  may attempt to write back dirty pages in the specified region,

              but this is not guaranteed.  Any unwritten dirty pages will not be freed.   If  the

              application  wishes  to  ensure  that  dirty pages will be released, it should call

              fsync(2) or fdatasync(2) first.

RETURN VALUE

       On success, zero is returned.  On error, an error number is returned.

ERRORS

       EBADF  The fd argument was not a valid file descriptor.

       EINVAL An invalid value was specified for advice. Page 2/4



       ESPIPE The specified file descriptor refers to a pipe or FIFO.  (ESPIPE is the error spec?

              ified  by  POSIX,  but  before kernel version 2.6.16, Linux returned EINVAL in this

              case.)

VERSIONS

       Kernel support first appeared in Linux 2.5.60; the underlying system call is  called  fad?

       vise64().   Library  support  has  been  provided since glibc version 2.2, via the wrapper

       function posix_fadvise().

       Since Linux 3.18, support for the underlying system call is  optional,  depending  on  the

       setting of the CONFIG_ADVISE_SYSCALLS configuration option.

CONFORMING TO

       POSIX.1-2001,  POSIX.1-2008.   Note  that  the  type  of the len argument was changed from

       size_t to off_t in POSIX.1-2001 TC1.

NOTES

       Under Linux, POSIX_FADV_NORMAL sets the readahead window to the default size for the back?

       ing  device;  POSIX_FADV_SEQUENTIAL doubles this size, and POSIX_FADV_RANDOM disables file

       readahead entirely.  These changes affect the entire file, not just the  specified  region

       (but other open file handles to the same file are unaffected).

       The  contents  of  the kernel buffer cache can be cleared via the /proc/sys/vm/drop_caches

       interface described in proc(5).

       One can obtain a snapshot of which pages of a file are resident in  the  buffer  cache  by

       opening a file, mapping it with mmap(2), and then applying mincore(2) to the mapping.

   C library/kernel differences

       The name of the wrapper function in the C library is posix_fadvise().  The underlying sys?

       tem call is called fadvise64() (or, on some architectures, fadvise64_64()); the difference

       between  the  two is that the former system call assumes that the type of the len argument

       is size_t, while the latter expects loff_t there.

   Architecture-specific variants

       Some architectures require 64-bit arguments to be aligned in a suitable pair of  registers

       (see  syscall(2)  for  further  detail).   On  such  architectures,  the call signature of

       posix_fadvise() shown in the SYNOPSIS would force a register to be wasted as  padding  be?

       tween the fd and offset arguments.  Therefore, these architectures define a version of the

       system call that orders the arguments suitably, but  is  otherwise  exactly  the  same  as

       posix_fadvise(). Page 3/4



       For example, since Linux 2.6.14, ARM has the following system call:

           long arm_fadvise64_64(int fd, int advice,

                                 loff_t offset, loff_t len);

       These  architecture-specific  details  are generally hidden from applications by the glibc

       posix_fadvise() wrapper function, which invokes the appropriate architecture-specific sys?

       tem call.

BUGS

       In kernels before 2.6.6, if len was specified as 0, then this was interpreted literally as

       "zero bytes", rather than as meaning "all bytes through to the end of the file".

SEE ALSO

       fincore(1), mincore(2), readahead(2), sync_file_range(2),  posix_fallocate(3),  posix_mad?

       vise(3)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A description of the

       project, information about reporting bugs, and the latest version of  this  page,  can  be

       found at https://www.kernel.org/doc/man-pages/.

Linux                                       2019-03-06                           POSIX_FADVISE(2)

Page 4/4


