
Rocky Enterprise Linux 9.2 Manual Pages on command 'apt.conf.5'

$ man apt.conf.5

APT.CONF(5) APT APT.CONF(5)

NAME

 apt.conf - Configuration file for APT

DESCRIPTION

 /etc/apt/apt.conf is the main configuration file shared by all the tools in the APT suite

 of tools, though it is by no means the only place options can be set. The suite also

 shares a common command line parser to provide a uniform environment.

 When an APT tool starts up it will read the configuration files in the following order:

 1. the file specified by the APT_CONFIG environment variable (if any)

 2. all files in Dir::Etc::Parts in alphanumeric ascending order which have either no or

 "conf" as filename extension and which only contain alphanumeric, hyphen (-),

 underscore (_) and period (.) characters. Otherwise APT will print a notice that it

 has ignored a file, unless that file matches a pattern in the

 Dir::Ignore-Files-Silently configuration list - in which case it will be silently

 ignored.

 3. the main configuration file specified by Dir::Etc::main

 4. all options set in the binary specific configuration subtree are moved into the root

 of the tree.

 5. the command line options are applied to override the configuration directives or to

 load even more configuration files.

SYNTAX

 The configuration file is organized in a tree with options organized into functional

 groups. Option specification is given with a double colon notation; for instance Page 1/20

 APT::Get::Assume-Yes is an option within the APT tool group, for the Get tool. Options do

 not inherit from their parent groups.

 Syntactically the configuration language is modeled after what the ISC tools such as bind

 and dhcp use. Lines starting with // are treated as comments (ignored), as well as all

 text between /* and */, just like C/C++ comments. Lines starting with # are also treated

 as comments. Each line is of the form APT::Get::Assume-Yes "true";. The quotation marks

 and trailing semicolon are required. The value must be on one line, and there is no kind

 of string concatenation. Values must not include backslashes or extra quotation marks.

 Option names are made up of alphanumeric characters and the characters "/-:._+". A new

 scope can be opened with curly braces, like this:

 APT {

 Get {

 Assume-Yes "true";

 Fix-Broken "true";

 };

 };

 with newlines placed to make it more readable. Lists can be created by opening a scope and

 including a single string enclosed in quotes followed by a semicolon. Multiple entries can

 be included, separated by a semicolon.

 DPkg::Pre-Install-Pkgs {"/usr/sbin/dpkg-preconfigure --apt";};

 In general the sample configuration file /usr/share/doc/apt/examples/configure-index.gz is

 a good guide for how it should look.

 Case is not significant in names of configuration items, so in the previous example you

 could use dpkg::pre-install-pkgs.

 Names for the configuration items are optional if a list is defined as can be seen in the

 DPkg::Pre-Install-Pkgs example above. If you don't specify a name a new entry will simply

 add a new option to the list. If you specify a name you can override the option in the

 same way as any other option by reassigning a new value to the option.

 Two special commands are defined: #include (which is deprecated and not supported by

 alternative implementations) and #clear. #include will include the given file, unless the

 filename ends in a slash, in which case the whole directory is included. #clear is used

 to erase a part of the configuration tree. The specified element and all its descendants

 are erased. (Note that these lines also need to end with a semicolon.) Page 2/20

 The #clear command is the only way to delete a list or a complete scope. Reopening a scope

 (or using the syntax described below with an appended ::) will not override previously

 written entries. Options can only be overridden by addressing a new value to them - lists

 and scopes can't be overridden, only cleared.

 All of the APT tools take an -o option which allows an arbitrary configuration directive

 to be specified on the command line. The syntax is a full option name

 (APT::Get::Assume-Yes for instance) followed by an equals sign then the new value of the

 option. To append a new element to a list, add a trailing :: to the name of the list. (As

 you might suspect, the scope syntax can't be used on the command line.)

 Note that appending items to a list using :: only works for one item per line, and that

 you should not use it in combination with the scope syntax (which adds :: implicitly).

 Using both syntaxes together will trigger a bug which some users unfortunately depend on:

 an option with the unusual name "::" which acts like every other option with a name. This

 introduces many problems; for one thing, users who write multiple lines in this wrong

 syntax in the hope of appending to a list will achieve the opposite, as only the last

 assignment for this option "::" will be used. Future versions of APT will raise errors and

 stop working if they encounter this misuse, so please correct such statements now while

 APT doesn't explicitly complain about them.

THE APT GROUP

 This group of options controls general APT behavior as well as holding the options for all

 of the tools.

 Architecture

 System Architecture; sets the architecture to use when fetching files and parsing

 package lists. The internal default is the architecture apt was compiled for.

 Architectures

 All Architectures the system supports. For instance, CPUs implementing the amd64 (also

 called x86-64) instruction set are also able to execute binaries compiled for the i386

 (x86) instruction set. This list is used when fetching files and parsing package

 lists. The initial default is always the system's native architecture

 (APT::Architecture), and foreign architectures are added to the default list when they

 are registered via dpkg --add-architecture.

 Compressor

 This scope defines which compression formats are supported, how compression and Page 3/20

 decompression can be performed if support for this format isn't built into apt

 directly and a cost-value indicating how costly it is to compress something in this

 format. As an example the following configuration stanza would allow apt to download

 and uncompress as well as create and store files with the low-cost .reversed file

 extension which it will pass to the command rev without additional commandline

 parameters for compression and uncompression:

 APT::Compressor::rev {

 Name "rev";

 Extension ".reversed";

 Binary "rev";

 CompressArg {};

 UncompressArg {};

 Cost "10";

 };

 Build-Profiles

 List of all build profiles enabled for build-dependency resolution, without the

 "profile." namespace prefix. By default this list is empty. The DEB_BUILD_PROFILES as

 used by dpkg-buildpackage(1) overrides the list notation.

 Default-Release

 Default release to install packages from if more than one version is available.

 Contains release name, codename or release version. Examples: 'stable', 'testing',

 'unstable', 'bullseye', 'bookworm', '4.0', '5.0*'. See also apt_preferences(5).

 Snapshot

 Snapshot to use for all repositories configured with Snapshot: yes. See also

 sources.list(5), the --snapshot option that sets this value, and

 Acquire::Snapshots::URI below.

 Ignore-Hold

 Ignore held packages; this global option causes the problem resolver to ignore held

 packages in its decision making.

 Clean-Installed

 Defaults to on. When turned on the autoclean feature will remove any packages which

 can no longer be downloaded from the cache. If turned off then packages that are

 locally installed are also excluded from cleaning - but note that APT provides no Page 4/20

 direct means to reinstall them.

 Immediate-Configure

 Defaults to on, which will cause APT to install essential and important packages as

 soon as possible in an install/upgrade operation, in order to limit the effect of a

 failing dpkg(1) call. If this option is disabled, APT treats an important package in

 the same way as an extra package: between the unpacking of the package A and its

 configuration there can be many other unpack or configuration calls for other

 unrelated packages B, C etc. If these cause the dpkg(1) call to fail (e.g. because

 package B's maintainer scripts generate an error), this results in a system state in

 which package A is unpacked but unconfigured - so any package depending on A is now no

 longer guaranteed to work, as its dependency on A is no longer satisfied.

 The immediate configuration marker is also applied in the potentially problematic case

 of circular dependencies, since a dependency with the immediate flag is equivalent to

 a Pre-Dependency. In theory this allows APT to recognise a situation in which it is

 unable to perform immediate configuration, abort, and suggest to the user that the

 option should be temporarily deactivated in order to allow the operation to proceed.

 Note the use of the word "theory" here; in the real world this problem has rarely been

 encountered, in non-stable distribution versions, and was caused by wrong dependencies

 of the package in question or by a system in an already broken state; so you should

 not blindly disable this option, as the scenario mentioned above is not the only

 problem it can help to prevent in the first place.

 Before a big operation like dist-upgrade is run with this option disabled you should

 try to explicitly install the package APT is unable to configure immediately; but

 please make sure you also report your problem to your distribution and to the APT team

 with the bug link below, so they can work on improving or correcting the upgrade

 process.

 Force-LoopBreak

 Never enable this option unless you really know what you are doing. It permits APT to

 temporarily remove an essential package to break a Conflicts/Conflicts or

 Conflicts/Pre-Depends loop between two essential packages. Such a loop should never

 exist and is a grave bug. This option will work if the essential packages are not tar,

 gzip, libc, dpkg, dash or anything that those packages depend on.

 Cache-Start, Cache-Grow, Cache-Limit Page 5/20

 APT uses since version 0.7.26 a resizable memory mapped cache file to store the

 available information. Cache-Start acts as a hint of the size the cache will grow to,

 and is therefore the amount of memory APT will request at startup. The default value

 is 20971520 bytes (~20 MB). Note that this amount of space needs to be available for

 APT; otherwise it will likely fail ungracefully, so for memory restricted devices this

 value should be lowered while on systems with a lot of configured sources it should be

 increased. Cache-Grow defines in bytes with the default of 1048576 (~1 MB) how much

 the cache size will be increased in the event the space defined by Cache-Start is not

 enough. This value will be applied again and again until either the cache is big

 enough to store all information or the size of the cache reaches the Cache-Limit. The

 default of Cache-Limit is 0 which stands for no limit. If Cache-Grow is set to 0 the

 automatic growth of the cache is disabled.

 Build-Essential

 Defines which packages are considered essential build dependencies.

 Get

 The Get subsection controls the apt-get(8) tool; please see its documentation for more

 information about the options here.

 Cache

 The Cache subsection controls the apt-cache(8) tool; please see its documentation for

 more information about the options here.

 CDROM

 The CDROM subsection controls the apt-cdrom(8) tool; please see its documentation for

 more information about the options here.

THE ACQUIRE GROUP

 The Acquire group of options controls the download of packages as well as the various

 "acquire methods" responsible for the download itself (see also sources.list(5)).

 Check-Date

 Security related option defaulting to true, enabling time-related checks. Disabling it

 means that the machine's time cannot be trusted, and APT will hence disable all

 time-related checks, such as Check-Valid-Until and verifying that the Date field of a

 release file is not in the future.

 Max-FutureTime

 Maximum time (in seconds) before its creation (as indicated by the Date header) that Page 6/20

 the Release file should be considered valid. The default value is 10. Archive specific

 settings can be made by appending the label of the archive to the option name.

 Preferably, the same can be achieved for specific sources.list(5) entries by using the

 Date-Max-Future option there.

 Check-Valid-Until

 Security related option defaulting to true, as giving a Release file's validation an

 expiration date prevents replay attacks over a long timescale, and can also for

 example help users to identify mirrors that are no longer updated - but the feature

 depends on the correctness of the clock on the user system. Archive maintainers are

 encouraged to create Release files with the Valid-Until header, but if they don't or a

 stricter value is desired the Max-ValidTime option below can be used. The

 Check-Valid-Until option of sources.list(5) entries should be preferred to disable the

 check selectively instead of using this global override.

 Max-ValidTime

 Maximum time (in seconds) after its creation (as indicated by the Date header) that

 the Release file should be considered valid. If the Release file itself includes a

 Valid-Until header the earlier date of the two is used as the expiration date. The

 default value is 0 which stands for "valid forever". Archive specific settings can be

 made by appending the label of the archive to the option name. Preferably, the same

 can be achieved for specific sources.list(5) entries by using the Valid-Until-Max

 option there.

 Min-ValidTime

 Minimum time (in seconds) after its creation (as indicated by the Date header) that

 the Release file should be considered valid. Use this if you need to use a seldom

 updated (local) mirror of a more frequently updated archive with a Valid-Until header

 instead of completely disabling the expiration date checking. Archive specific

 settings can and should be used by appending the label of the archive to the option

 name. Preferably, the same can be achieved for specific sources.list(5) entries by

 using the Valid-Until-Min option there.

 AllowTLS

 Allow use of the internal TLS support in the http method. If set to false, this

 completely disables support for TLS in apt's own methods (excluding the curl-based

 https method). No TLS-related functions will be called anymore. Page 7/20

 PDiffs

 Try to download deltas called PDiffs for indexes (like Packages files) instead of

 downloading whole ones. True by default. Preferably, this can be set for specific

 sources.list(5) entries or index files by using the PDiffs option there.

 Two sub-options to limit the use of PDiffs are also available: FileLimit can be used

 to specify a maximum number of PDiff files should be downloaded to update a file.

 SizeLimit on the other hand is the maximum percentage of the size of all patches

 compared to the size of the targeted file. If one of these limits is exceeded the

 complete file is downloaded instead of the patches.

 By-Hash

 Try to download indexes via an URI constructed from a hashsum of the expected file

 rather than downloaded via a well-known stable filename. True by default, but

 automatically disabled if the source indicates no support for it. Usage can be forced

 with the special value "force". Preferably, this can be set for specific

 sources.list(5) entries or index files by using the By-Hash option there.

 Queue-Mode

 Queuing mode; Queue-Mode can be one of host or access which determines how APT

 parallelizes outgoing connections. host means that one connection per target host

 will be opened, access means that one connection per URI type will be opened.

 Retries

 Number of retries to perform. If this is non-zero APT will retry failed files the

 given number of times.

 Source-Symlinks

 Use symlinks for source archives. If set to true then source archives will be

 symlinked when possible instead of copying. True is the default.

 http https

 The options in these scopes configure APT's acquire transports for the protocols HTTP

 and HTTPS and are documented in the apt-transport-http(1) and apt-transport-https(1)

 manpages respectively.

 ftp

 ftp::Proxy sets the default proxy to use for FTP URIs. It is in the standard form of

 ftp://[[user][:pass]@]host[:port]/. Per host proxies can also be specified by using

 the form ftp::Proxy::<host> with the special keyword DIRECT meaning to use no proxies. Page 8/20

 If no one of the above settings is specified, ftp_proxy environment variable will be

 used. To use an FTP proxy you will have to set the ftp::ProxyLogin script in the

 configuration file. This entry specifies the commands to send to tell the proxy server

 what to connect to. Please see /usr/share/doc/apt/examples/configure-index.gz for an

 example of how to do this. The substitution variables representing the corresponding

 URI component are $(PROXY_USER), $(PROXY_PASS), $(SITE_USER), $(SITE_PASS), $(SITE)

 and $(SITE_PORT).

 The option timeout sets the timeout timer used by the method; this value applies to

 the connection as well as the data timeout.

 Several settings are provided to control passive mode. Generally it is safe to leave

 passive mode on; it works in nearly every environment. However, some situations

 require that passive mode be disabled and port mode FTP used instead. This can be done

 globally or for connections that go through a proxy or for a specific host (see the

 sample config file for examples).

 It is possible to proxy FTP over HTTP by setting the ftp_proxy environment variable to

 an HTTP URL - see the discussion of the http method above for syntax. You cannot set

 this in the configuration file and it is not recommended to use FTP over HTTP due to

 its low efficiency.

 The setting ForceExtended controls the use of RFC2428 EPSV and EPRT commands. The

 default is false, which means these commands are only used if the control connection

 is IPv6. Setting this to true forces their use even on IPv4 connections. Note that

 most FTP servers do not support RFC2428.

 cdrom

 For URIs using the cdrom method, the only configurable option is the mount point,

 cdrom::Mount, which must be the mount point for the CD-ROM (or DVD, or whatever) drive

 as specified in /etc/fstab. It is possible to provide alternate mount and unmount

 commands if your mount point cannot be listed in the fstab. The syntax is to put

 /cdrom/::Mount "foo";

 within the cdrom block. It is important to have the trailing slash. Unmount commands

 can be specified using UMount.

 gpgv

 For GPGV URIs the only configurable option is gpgv::Options, which passes additional

 parameters to gpgv. Page 9/20

 CompressionTypes

 List of compression types which are understood by the acquire methods. Files like

 Packages can be available in various compression formats. By default the acquire

 methods can decompress and recompress many common formats like xz and gzip; with this

 scope the supported formats can be queried, modified as well as support for more

 formats added (see also APT::Compressor). The syntax for this is:

 Acquire::CompressionTypes::FileExtension "Methodname";

 Also, the Order subgroup can be used to define in which order the acquire system will

 try to download the compressed files. The acquire system will try the first and

 proceed with the next compression type in this list on error, so to prefer one over

 the other type simply add the preferred type first - types not already added will be

 implicitly appended to the end of the list, so e.g.

 Acquire::CompressionTypes::Order:: "gz";

 can be used to prefer gzip compressed files over all other compression formats. If xz

 should be preferred over gzip and bzip2 the configure setting should look like this:

 Acquire::CompressionTypes::Order { "xz"; "gz"; };

 It is not needed to add bz2 to the list explicitly as it will be added automatically.

 Note that the Dir::Bin::Methodname will be checked at run time. If this option has

 been set and support for this format isn't directly built into apt, the method will

 only be used if this file exists; e.g. for the bzip2 method (the inbuilt) setting is:

 Dir::Bin::bzip2 "/bin/bzip2";

 Note also that list entries specified on the command line will be added at the end of

 the list specified in the configuration files, but before the default entries. To

 prefer a type in this case over the ones specified in the configuration files you can

 set the option direct - not in list style. This will not override the defined list; it

 will only prefix the list with this type.

 The special type uncompressed can be used to give uncompressed files a preference, but

 note that most archives don't provide uncompressed files so this is mostly only usable

 for local mirrors.

 GzipIndexes

 When downloading gzip compressed indexes (Packages, Sources, or Translations), keep

 them gzip compressed locally instead of unpacking them. This saves quite a lot of disk

 space at the expense of more CPU requirements when building the local package caches. Page 10/20

 False by default.

 Languages

 The Languages subsection controls which Translation files are downloaded and in which

 order APT tries to display the description-translations. APT will try to display the

 first available description in the language which is listed first. Languages can be

 defined with their short or long language codes. Note that not all archives provide

 Translation files for every language - the long language codes are especially rare.

 The default list includes "environment" and "en". "environment" has a special meaning

 here: it will be replaced at runtime with the language codes extracted from the

 LC_MESSAGES environment variable. It will also ensure that these codes are not

 included twice in the list. If LC_MESSAGES is set to "C" only the Translation-en file

 (if available) will be used. To force APT to use no Translation file use the setting

 Acquire::Languages=none. "none" is another special meaning code which will stop the

 search for a suitable Translation file. This tells APT to download these translations

 too, without actually using them unless the environment specifies the languages. So

 the following example configuration will result in the order "en, de" in an English

 locale or "de, en" in a German one. Note that "fr" is downloaded, but not used unless

 APT is used in a French locale (where the order would be "fr, de, en").

 Acquire::Languages { "environment"; "de"; "en"; "none"; "fr"; };

 Note: To prevent problems resulting from APT being executed in different environments

 (e.g. by different users or by other programs) all Translation files which are found

 in /var/lib/apt/lists/ will be added to the end of the list (after an implicit

 "none").

 ForceIPv4

 When downloading, force to use only the IPv4 protocol.

 ForceIPv6

 When downloading, force to use only the IPv6 protocol.

 MaxReleaseFileSize

 The maximum file size of Release/Release.gpg/InRelease files. The default is 10MB.

 EnableSrvRecords

 This option controls if apt will use the DNS SRV server record as specified in RFC

 2782 to select an alternative server to connect to. The default is "true".

 AllowInsecureRepositories Page 11/20

 Allow update operations to load data files from repositories without sufficient

 security information. The default value is "false". Concept, implications as well as

 alternatives are detailed in apt-secure(8).

 AllowWeakRepositories

 Allow update operations to load data files from repositories which provide security

 information, but these are deemed no longer cryptographically strong enough. The

 default value is "false". Concept, implications as well as alternatives are detailed

 in apt-secure(8).

 AllowDowngradeToInsecureRepositories

 Allow that a repository that was previously gpg signed to become unsigned during an

 update operation. When there is no valid signature for a previously trusted repository

 apt will refuse the update. This option can be used to override this protection. You

 almost certainly never want to enable this. The default is false. Concept,

 implications as well as alternatives are detailed in apt-secure(8).

 Changelogs::URI scope

 Acquiring changelogs can only be done if an URI is known from where to get them.

 Preferable the Release file indicates this in a 'Changelogs' field. If this isn't

 available the Label/Origin field of the Release file is used to check if a

 Acquire::Changelogs::URI::Label::LABEL or Acquire::Changelogs::URI::Origin::ORIGIN

 option exists and if so this value is taken. The value in the Release file can be

 overridden with Acquire::Changelogs::URI::Override::Label::LABEL or

 Acquire::Changelogs::URI::Override::Origin::ORIGIN. The value should be a normal URI

 to a text file, except that package specific data is replaced with the placeholder

 @CHANGEPATH@. The value for it is: 1. if the package is from a component (e.g. main)

 this is the first part otherwise it is omitted, 2. the first letter of source package

 name, except if the source package name starts with 'lib' in which case it will be the

 first four letters. 3. The complete source package name. 4. the complete name again

 and 5. the source version. The first (if present), second, third and fourth part are

 separated by a slash ('/') and between the fourth and fifth part is an underscore

 ('_'). The special value 'no' is available for this option indicating that this source

 can't be used to acquire changelog files from. Another source will be tried if

 available in this case.

 Snapshots::URI scope Page 12/20

 Like changelogs, snapshots can only be acquired if an URI is known from where to get

 them. Preferable the Release file indicates this in a 'Snapshots' field. If this isn't

 available the Label/Origin field of the Release file is used to check if a

 Acquire::Snapshots::URI::Label::LABEL or Acquire::Snapshots::URI::Origin::ORIGIN

 option exists and if so this value is taken. The value in the Release file can be

 overridden with Acquire::Snapshots::URI::Override::Label::LABEL or

 Acquire::Snapshots::URI::Override::Origin::ORIGIN. The value should be a normal URI to

 a directory, except that the snapshot ID replaced with the placeholder @SNAPSHOTID.

 The special value 'no' is available for this option indicating that this source cannot

 be used to acquire snapshots from. Another source will be tried if available in this

 case.

BINARY SPECIFIC CONFIGURATION

 Especially with the introduction of the apt binary it can be useful to set certain options

 only for a specific binary as even options which look like they would effect only a

 certain binary like APT::Get::Show-Versions effect apt-get as well as apt.

 Setting an option for a specific binary only can be achieved by setting the option inside

 the Binary::specific-binary scope. Setting the option APT::Get::Show-Versions for the apt

 only can e.g. by done by setting Binary::apt::APT::Get::Show-Versions instead.

 Note that as seen in the DESCRIPTION section further above you can't set binary-specific

 options on the commandline itself nor in configuration files loaded via the commandline.

DIRECTORIES

 The Dir::State section has directories that pertain to local state information. lists is

 the directory to place downloaded package lists in and status is the name of the dpkg(1)

 status file. preferences is the name of the APT preferences file. Dir::State contains

 the default directory to prefix on all sub-items if they do not start with / or ./.

 Dir::Cache contains locations pertaining to local cache information, such as the two

 package caches srcpkgcache and pkgcache as well as the location to place downloaded

 archives, Dir::Cache::archives. Generation of caches can be turned off by setting pkgcache

 or srcpkgcache to "". This will slow down startup but save disk space. It is probably

 preferable to turn off the pkgcache rather than the srcpkgcache. Like Dir::State the

 default directory is contained in Dir::Cache

 Dir::Etc contains the location of configuration files, sourcelist gives the location of

 the sourcelist and main is the default configuration file (setting has no effect, unless Page 13/20

 it is done from the config file specified by APT_CONFIG).

 The Dir::Parts setting reads in all the config fragments in lexical order from the

 directory specified. After this is done then the main config file is loaded.

 Binary programs are pointed to by Dir::Bin. Dir::Bin::Methods specifies the location of

 the method handlers and gzip, bzip2, lzma, dpkg, apt-get dpkg-source dpkg-buildpackage and

 apt-cache specify the location of the respective programs.

 The configuration item RootDir has a special meaning. If set, all paths will be relative

 to RootDir, even paths that are specified absolutely. So, for instance, if RootDir is set

 to /tmp/staging and Dir::State::status is set to /var/lib/dpkg/status, then the status

 file will be looked up in /tmp/staging/var/lib/dpkg/status. If you want to prefix only

 relative paths, set Dir instead.

 The Ignore-Files-Silently list can be used to specify which files APT should silently

 ignore while parsing the files in the fragment directories. Per default a file which ends

 with .disabled, ~, .bak or .dpkg-[a-z]+ is silently ignored. As seen in the last default

 value these patterns can use regular expression syntax.

APT IN DSELECT

 When APT is used as a dselect(1) method several configuration directives control the

 default behavior. These are in the DSelect section.

 Clean

 Cache Clean mode; this value may be one of always, prompt, auto, pre-auto and never.

 always and prompt will remove all packages from the cache after upgrading, prompt (the

 default) does so conditionally. auto removes only those packages which are no longer

 downloadable (replaced with a new version for instance). pre-auto performs this

 action before downloading new packages.

 options

 The contents of this variable are passed to apt-get(8) as command line options when it

 is run for the install phase.

 Updateoptions

 The contents of this variable are passed to apt-get(8) as command line options when it

 is run for the update phase.

 PromptAfterUpdate

 If true the [U]pdate operation in dselect(1) will always prompt to continue. The

 default is to prompt only on error. Page 14/20

HOW APT CALLS DPKG(1)

 Several configuration directives control how APT invokes dpkg(1). These are in the DPkg

 section.

 options

 This is a list of options to pass to dpkg(1). The options must be specified using the

 list notation and each list item is passed as a single argument to dpkg(1).

 Path

 This is a string that defines the PATH environment variable used when running dpkg. It

 may be set to any valid value of that environment variable; or the empty string, in

 which case the variable is not changed.

 Pre-Invoke, Post-Invoke

 This is a list of shell commands to run before/after invoking dpkg(1). Like options

 this must be specified in list notation. The commands are invoked in order using

 /bin/sh; should any fail APT will abort.

 Pre-Install-Pkgs

 This is a list of shell commands to run before invoking dpkg(1). Like options this

 must be specified in list notation. The commands are invoked in order using /bin/sh;

 should any fail APT will abort. APT will pass the filenames of all .deb files it is

 going to install to the commands, one per line on the requested file descriptor,

 defaulting to standard input.

 Version 2 of this protocol sends more information through the requested file

 descriptor: a line with the text VERSION 2, the APT configuration space, and a list of

 package actions with filename and version information.

 Each configuration directive line has the form key=value. Special characters (equal

 signs, newlines, nonprintable characters, quotation marks, and percent signs in key

 and newlines, nonprintable characters, and percent signs in value) are %-encoded.

 Lists are represented by multiple key::=value lines with the same key. The

 configuration section ends with a blank line.

 Package action lines consist of five fields in Version 2: package name (without

 architecture qualification even if foreign), old version, direction of version change

 (< for upgrades, > for downgrades, = for no change), new version, action. The version

 fields are "-" for no version at all (for example when installing a package for the

 first time; no version is treated as earlier than any real version, so that is an Page 15/20

 upgrade, indicated as - < 1.23.4). The action field is "**CONFIGURE**" if the package

 is being configured, "**REMOVE**" if it is being removed, or the filename of a .deb

 file if it is being unpacked.

 In Version 3 after each version field follows the architecture of this version, which

 is "-" if there is no version, and a field showing the MultiArch type "same",

 "foreign", "allowed" or "none". Note that "none" is an incorrect typename which is

 just kept to remain compatible, it should be read as "no" and users are encouraged to

 support both.

 The version of the protocol to be used for the command cmd can be chosen by setting

 DPkg::Tools::options::cmd::Version accordingly, the default being version 1. If APT

 isn't supporting the requested version it will send the information in the highest

 version it has support for instead.

 The file descriptor to be used to send the information can be requested with

 DPkg::Tools::options::cmd::InfoFD which defaults to 0 for standard input and is

 available since version 0.9.11. Support for the option can be detected by looking for

 the environment variable APT_HOOK_INFO_FD which contains the number of the used file

 descriptor as a confirmation.

 Run-Directory

 APT chdirs to this directory before invoking dpkg(1), the default is /.

 Build-options

 These options are passed to dpkg-buildpackage(1) when compiling packages; the default

 is to disable signing and produce all binaries.

 DPkg::ConfigurePending

 If this option is set APT will call dpkg --configure --pending to let dpkg(1) handle

 all required configurations and triggers. This option is activated by default, but

 deactivating it could be useful if you want to run APT multiple times in a row - e.g.

 in an installer. In this scenario you could deactivate this option in all but the last

 run.

PERIODIC AND ARCHIVES OPTIONS

 APT::Periodic and APT::Archives groups of options configure behavior of apt periodic

 updates, which is done by the /usr/lib/apt/apt.systemd.daily script. See the top of this

 script for the brief documentation of these options.

DEBUG OPTIONS Page 16/20

 Enabling options in the Debug:: section will cause debugging information to be sent to the

 standard error stream of the program utilizing the apt libraries, or enable special

 program modes that are primarily useful for debugging the behavior of apt. Most of these

 options are not interesting to a normal user, but a few may be:

 ? Debug::pkgProblemResolver enables output about the decisions made by dist-upgrade,

 upgrade, install, remove, purge.

 ? Debug::NoLocking disables all file locking. This can be used to run some operations

 (for instance, apt-get -s install) as a non-root user.

 ? Debug::pkgDPkgPM prints out the actual command line each time that apt invokes

 dpkg(1).

 ? Debug::IdentCdrom disables the inclusion of statfs data in CD-ROM IDs.

 A full list of debugging options to apt follows.

 Debug::Acquire::cdrom

 Print information related to accessing cdrom:// sources.

 Debug::Acquire::ftp

 Print information related to downloading packages using FTP.

 Debug::Acquire::http

 Print information related to downloading packages using HTTP.

 Debug::Acquire::https

 Print information related to downloading packages using HTTPS.

 Debug::Acquire::gpgv

 Print information related to verifying cryptographic signatures using gpg.

 Debug::aptcdrom

 Output information about the process of accessing collections of packages stored on

 CD-ROMs.

 Debug::BuildDeps

 Describes the process of resolving build-dependencies in apt-get(8).

 Debug::Hashes

 Output each cryptographic hash that is generated by the apt libraries.

 Debug::IdentCDROM

 Do not include information from statfs, namely the number of used and free blocks on

 the CD-ROM filesystem, when generating an ID for a CD-ROM.

 Debug::NoLocking Page 17/20

 Disable all file locking. For instance, this will allow two instances of ?apt-get

 update? to run at the same time.

 Debug::pkgAcquire

 Log when items are added to or removed from the global download queue.

 Debug::pkgAcquire::Auth

 Output status messages and errors related to verifying checksums and cryptographic

 signatures of downloaded files.

 Debug::pkgAcquire::Diffs

 Output information about downloading and applying package index list diffs, and errors

 relating to package index list diffs.

 Debug::pkgAcquire::RRed

 Output information related to patching apt package lists when downloading index diffs

 instead of full indices.

 Debug::pkgAcquire::Worker

 Log all interactions with the sub-processes that actually perform downloads.

 Debug::pkgAutoRemove

 Log events related to the automatically-installed status of packages and to the

 removal of unused packages.

 Debug::pkgDepCache::AutoInstall

 Generate debug messages describing which packages are being automatically installed to

 resolve dependencies. This corresponds to the initial auto-install pass performed in,

 e.g., apt-get install, and not to the full apt dependency resolver; see

 Debug::pkgProblemResolver for that.

 Debug::pkgDepCache::Marker

 Generate debug messages describing which packages are marked as keep/install/remove

 while the ProblemResolver does his work. Each addition or deletion may trigger

 additional actions; they are shown indented two additional spaces under the original

 entry. The format for each line is MarkKeep, MarkDelete or MarkInstall followed by

 package-name <a.b.c -> d.e.f | x.y.z> (section) where a.b.c is the current version of

 the package, d.e.f is the version considered for installation and x.y.z is a newer

 version, but not considered for installation (because of a low pin score). The later

 two can be omitted if there is none or if it is the same as the installed version.

 section is the name of the section the package appears in. Page 18/20

 Debug::pkgDPkgPM

 When invoking dpkg(1), output the precise command line with which it is being invoked,

 with arguments separated by a single space character.

 Debug::pkgDPkgProgressReporting

 Output all the data received from dpkg(1) on the status file descriptor and any errors

 encountered while parsing it.

 Debug::pkgOrderList

 Generate a trace of the algorithm that decides the order in which apt should pass

 packages to dpkg(1).

 Debug::pkgPackageManager

 Output status messages tracing the steps performed when invoking dpkg(1).

 Debug::pkgPolicy

 Output the priority of each package list on startup.

 Debug::pkgProblemResolver

 Trace the execution of the dependency resolver (this applies only to what happens when

 a complex dependency problem is encountered).

 Debug::pkgProblemResolver::ShowScores

 Display a list of all installed packages with their calculated score used by the

 pkgProblemResolver. The description of the package is the same as described in

 Debug::pkgDepCache::Marker

 Debug::sourceList

 Print information about the vendors read from /etc/apt/vendors.list.

 Debug::RunScripts

 Display the external commands that are called by apt hooks. This includes e.g. the

 config options DPkg::{Pre,Post}-Invoke or APT::Update::{Pre,Post}-Invoke.

EXAMPLES

 /usr/share/doc/apt/examples/configure-index.gz is a configuration file showing example

 values for all possible options.

FILES

 /etc/apt/apt.conf

 APT configuration file. Configuration Item: Dir::Etc::Main.

 /etc/apt/apt.conf.d/

 APT configuration file fragments. Configuration Item: Dir::Etc::Parts. Page 19/20

SEE ALSO

 apt-cache(8), apt-config(8), apt_preferences(5).

BUGS

 APT bug page[1]. If you wish to report a bug in APT, please see

 /usr/share/doc/debian/bug-reporting.txt or the reportbug(1) command.

AUTHORS

 Jason Gunthorpe

 APT team

 Daniel Burrows <dburrows@debian.org>

 Initial documentation of Debug::*.

NOTES

 1. APT bug page

 http://bugs.debian.org/src:apt

APT 2.4.12 03 January 2016 APT.CONF(5)

Page 20/20

