
Rocky Enterprise Linux 9.2 Manual Pages on command 'apt-transport-https.1'

$ man apt-transport-https.1

APT-TRANSPORT-HTTP(1) APT APT-TRANSPORT-HTTP(1)

NAME

 apt-transport-https - APT transport for downloading via the HTTP Secure protocol (HTTPS)

DESCRIPTION

 This APT transport allows the use of repositories accessed via the HTTP Secure protocol

 (HTTPS), also referred to as HTTP over TLS. It is available by default since apt 1.5 and

 was available before that in the package apt-transport-https. Note that a transport is

 never called directly by a user but used by APT tools based on user configuration.

 HTTP is by itself an unencrypted transport protocol (compare apt-transport-http(1)),

 which, as indicated by the appended S, is wrapped in an encrypted layer known as Transport

 Layer Security (TLS) to provide end-to-end encryption. A sufficiently capable attacker can

 still observe the communication partners and deeper analysis of the encrypted

 communication might still reveal important details. An overview over available alternative

 transport methods is given in sources.list(5).

OPTIONS

 The HTTPS protocol is based on the HTTP protocol, so all options supported by apt-

 transport-http(1) are also available via Acquire::https and will default to the same

 values specified for Acquire::http. This manpage will only document the options unique to

 https.

 Server credentials

 By default all certificates trusted by the system (see ca-certificates package) are used

 for the verification of the server certificate. An alternative certificate authority (CA)

 can be configured with the Acquire::https::CAInfo option and its host-specific option Page 1/3

 Acquire::https::CAInfo::host. The CAInfo option specifies a file made up of CA

 certificates (in PEM format) concatenated together to create the chain which APT should

 use to verify the path from your self-signed root certificate. If the remote server

 provides the whole chain during the exchange, the file need only contain the root

 certificate. Otherwise, the whole chain is required. If you need to support multiple

 authorities, the only way is to concatenate everything.

 A custom certificate revocation list (CRL) can be configured with the options

 Acquire::https::CRLFile and Acquire::https::CRLFile::host. As with the previous option, a

 file in PEM format needs to be specified.

 Disabling security

 During server authentication, if certificate verification fails for some reason (expired,

 revoked, man in the middle, etc.), the connection fails. This is obviously what you want

 in all cases and what the default value (true) of the option Acquire::https::Verify-Peer

 and its host-specific variant provides. If you know exactly what you are doing, setting

 this option to "false" allows you to skip peer certificate verification and make the

 exchange succeed. Again, this option is for debugging or testing purposes only as it

 removes all security provided by the use of HTTPS.

 Similarly the option Acquire::https::Verify-Host and its host-specific variant can be used

 to deactivate a security feature: The certificate provided by the server includes the

 identity of the server which should match the DNS name used to access it. By default, as

 requested by RFC 2818, the name of the mirror is checked against the identity found in the

 certificate. This default behavior is safe and should not be changed, but if you know that

 the server you are using has a DNS name which does not match the identity in its

 certificate, you can set the option to "false", which will prevent the comparison from

 being performed.

 Client authentication

 Besides supporting password-based authentication (see apt_auth.conf(5)) HTTPS also

 supports authentication based on client certificates via Acquire::https::SSLCert and

 Acquire::https::SSLKey. These should be set respectively to the filename of the X.509

 client certificate and the associated (unencrypted) private key, both in PEM format. In

 practice the use of the host-specific variants of both options is highly recommended.

EXAMPLES

 Acquire::https { Page 2/3

 Proxy::example.org "DIRECT";

 Proxy "socks5h://apt:pass@127.0.0.1:9050";

 Proxy-Auto-Detect "/usr/local/bin/apt-https-proxy-auto-detect";

 No-Cache "true";

 Max-Age "3600";

 No-Store "true";

 Timeout "10";

 Dl-Limit "42";

 Pipeline-Depth "0";

 AllowRedirect "false";

 User-Agent "My APT-HTTPS";

 SendAccept "false";

 CAInfo "/path/to/ca/certs.pem";

 CRLFile "/path/to/all/crl.pem";

 Verify-Peer "true";

 Verify-Host::broken.example.org "false";

 SSLCert::example.org "/path/to/client/cert.pem";

 SSLKey::example.org "/path/to/client/key.pem"

 };

SEE ALSO

 apt-transport-http(1) apt.conf(5) apt_auth.conf(5) sources.list(5)

BUGS

 APT bug page[1]. If you wish to report a bug in APT, please see

 /usr/share/doc/debian/bug-reporting.txt or the reportbug(1) command.

AUTHOR

 APT team

NOTES

 1. APT bug page

 http://bugs.debian.org/src:apt

APT 2.4.12 11 May 2018 APT-TRANSPORT-HTTP(1)

Page 3/3

