
Rocky Enterprise Linux 9.2 Manual Pages on command 'apt-secure.8'

$ man apt-secure.8

APT-SECURE(8) APT APT-SECURE(8)

NAME

 apt-secure - Archive authentication support for APT

DESCRIPTION

 Starting with version 0.6, APT contains code that does signature checking of the Release

 file for all repositories. This ensures that data like packages in the archive can't be

 modified by people who have no access to the Release file signing key. Starting with

 version 1.1 APT requires repositories to provide recent authentication information for

 unimpeded usage of the repository. Since version 1.5 changes in the information contained

 in the Release file about the repository need to be confirmed before APT continues to

 apply updates from this repository.

 Note: All APT-based package management front-ends like apt-get(8), aptitude(8) and

 synaptic(8) support this authentication feature, so this manpage uses APT to refer to them

 all for simplicity only.

UNSIGNED REPOSITORIES

 If an archive has an unsigned Release file or no Release file at all current APT versions

 will refuse to download data from them by default in update operations and even if forced

 to download front-ends like apt-get(8) will require explicit confirmation if an

 installation request includes a package from such an unauthenticated archive.

 You can force all APT clients to raise only warnings by setting the configuration option

 Acquire::AllowInsecureRepositories to true. Individual repositories can also be allowed to

 be insecure via the sources.list(5) option allow-insecure=yes. Note that insecure

 repositories are strongly discouraged and all options to force apt to continue supporting Page 1/5

 them will eventually be removed. Users also have the Trusted option available to disable

 even the warnings, but be sure to understand the implications as detailed in

 sources.list(5).

 A repository which previously was authenticated but would loose this state in an update

 operation raises an error in all APT clients irrespective of the option to allow or forbid

 usage of insecure repositories. The error can be overcome by additionally setting

 Acquire::AllowDowngradeToInsecureRepositories to true or for Individual repositories with

 the sources.list(5) option allow-downgrade-to-insecure=yes.

SIGNED REPOSITORIES

 The chain of trust from an APT archive to the end user is made up of several steps.

 apt-secure is the last step in this chain; trusting an archive does not mean that you

 trust its packages not to contain malicious code, but means that you trust the archive

 maintainer. It's the archive maintainer's responsibility to ensure that the archive's

 integrity is preserved.

 apt-secure does not review signatures at a package level. If you require tools to do this

 you should look at debsig-verify and debsign (provided in the debsig-verify and devscripts

 packages respectively).

 The chain of trust in Debian starts (e.g.) when a maintainer uploads a new package or a

 new version of a package to the Debian archive. In order to become effective, this upload

 needs to be signed by a key contained in one of the Debian package maintainer keyrings

 (available in the debian-keyring package). Maintainers' keys are signed by other

 maintainers following pre-established procedures to ensure the identity of the key holder.

 Similar procedures exist in all Debian-based distributions.

 Once the uploaded package is verified and included in the archive, the maintainer

 signature is stripped off, and checksums of the package are computed and put in the

 Packages file. The checksums of all of the Packages files are then computed and put into

 the Release file. The Release file is then signed by the archive key for this Ubuntu

 release, and distributed alongside the packages and the Packages files on Ubuntu mirrors.

 The keys are in the Ubuntu archive keyring available in the ubuntu-keyring package.

 End users can check the signature of the Release file, extract a checksum of a package

 from it and compare it with the checksum of the package they downloaded by hand - or rely

 on APT doing this automatically.

 Notice that this is distinct from checking signatures on a per package basis. It is Page 2/5

 designed to prevent two possible attacks:

 ? Network "man in the middle" attacks. Without signature checking, malicious agents can

 introduce themselves into the package download process and provide malicious software

 either by controlling a network element (router, switch, etc.) or by redirecting

 traffic to a rogue server (through ARP or DNS spoofing attacks).

 ? Mirror network compromise. Without signature checking, a malicious agent can

 compromise a mirror host and modify the files in it to propagate malicious software to

 all users downloading packages from that host.

 However, it does not defend against a compromise of the master server itself (which signs

 the packages) or against a compromise of the key used to sign the Release files. In any

 case, this mechanism can complement a per-package signature.

INFORMATION CHANGES

 A Release file contains beside the checksums for the files in the repository also general

 information about the repository like the origin, codename or version number of the

 release.

 This information is shown in various places so a repository owner should always ensure

 correctness. Further more user configuration like apt_preferences(5) can depend and make

 use of this information. Since version 1.5 the user must therefore explicitly confirm

 changes to signal that the user is sufficiently prepared e.g. for the new major release of

 the distribution shipped in the repository (as e.g. indicated by the codename).

USER CONFIGURATION

 apt-key is the program that manages the list of keys used by APT to trust repositories. It

 can be used to add or remove keys as well as list the trusted keys. Limiting which key(s)

 are able to sign which archive is possible via the Signed-By in sources.list(5).

 Note that a default installation already contains all keys to securely acquire packages

 from the default repositories, so fiddling with apt-key is only needed if third-party

 repositories are added.

 In order to add a new key you need to first download it (you should make sure you are

 using a trusted communication channel when retrieving it), add it with apt-key and then

 run apt-get update so that apt can download and verify the InRelease or Release.gpg files

 from the archives you have configured.

REPOSITORY CONFIGURATION

 If you want to provide archive signatures in an archive under your maintenance you have Page 3/5

 to:

 ? Create a toplevel Release file, if it does not exist already. You can do this by

 running apt-ftparchive release (provided in apt-utils).

 ? Sign it. You can do this by running gpg --clearsign -o InRelease Release and gpg -abs

 -o Release.gpg Release.

 ? Publish the key fingerprint, so that your users will know what key they need to import

 in order to authenticate the files in the archive. It is best to ship your key in its

 own keyring package like Ubuntu does with ubuntu-keyring to be able to distribute

 updates and key transitions automatically later.

 ? Provide instructions on how to add your archive and key. If your users can't acquire

 your key securely the chain of trust described above is broken. How you can help users

 add your key depends on your archive and target audience ranging from having your

 keyring package included in another archive users already have configured (like the

 default repositories of their distribution) to leveraging the web of trust.

 Whenever the contents of the archive change (new packages are added or removed) the

 archive maintainer has to follow the first two steps outlined above.

SEE ALSO

 apt.conf(5), apt-get(8), sources.list(5), apt-key(8), apt-ftparchive(1), debsign(1),

 debsig-verify(1), gpg(1)

 For more background information you might want to review the Debian Security

 Infrastructure[1] chapter of the Securing Debian Manual (also available in the harden-doc

 package) and the Strong Distribution HOWTO[2] by V. Alex Brennen.

BUGS

 APT bug page[3]. If you wish to report a bug in APT, please see

 /usr/share/doc/debian/bug-reporting.txt or the reportbug(1) command.

AUTHOR

 APT was written by the APT team <apt@packages.debian.org>.

MANPAGE AUTHORS

 This man-page is based on the work of Javier Fern?ndez-Sanguino Pe?a, Isaac Jones, Colin

 Walters, Florian Weimer and Michael Vogt.

AUTHORS

 Jason Gunthorpe

 APT team Page 4/5

NOTES

 1. Debian Security Infrastructure

 https://www.debian.org/doc/manuals/securing-debian-howto/ch7

 2. Strong Distribution HOWTO

 http://www.cryptnet.net/fdp/crypto/strong_distro.html

 3. APT bug page

 http://bugs.debian.org/src:apt

APT 2.4.12 06 August 2016 APT-SECURE(8)

Page 5/5

