
Rocky Enterprise Linux 9.2 Manual Pages on command 'apt-patterns.7'

$ man apt-patterns.7

APT-PATTERNS(7) APT APT-PATTERNS(7)

NAME

 apt-patterns - Syntax and semantics of apt search patterns

DESCRIPTION

 Starting with version 2.0, APT provides support for patterns, which can be used to query

 the apt cache for packages.

LOGIC PATTERNS

 These patterns provide the basic means to combine other patterns into more complex

 expressions, as well as ?true and ?false patterns.

 ?and(PATTERN, PATTERN, ...), PATTERN PATTERN ...

 Selects objects where all specified patterns match.

 ?false, ~F

 Selects nothing.

 ?not(PATTERN), !PATTERN

 Selects objects where PATTERN does not match.

 ?or(PATTERN, PATTERN, ...), PATTERN | PATTERN | ...

 Selects objects where at least one of the specified patterns match.

 ?true, ~T

 Selects all objects.

 (PATTERN)

 Selects the same as PATTERN, can be used to work around precedence, for example,

 (~ramd64|~ri386)~nfoo

NARROWING PATTERNS Page 1/5

 ?all-versions(PATTERN)

 Selects packages where all versions match PATTERN. When matching versions instead,

 same as PATTERN.

 ?any-version(PATTERN)

 Selects any version where the pattern matches on the version.

 For example, while ?and(?version(1),?version(2)) matches a package which has one

 version containing 1 and one version containing 2,

 ?any-version(?and(?version(1),?version(2))) restricts the ?and to act on the same

 version.

 ?narrow(PATTERN...)

 Selects any version matching all PATTERNs, short for ?any-version(?and(PATTERN...)).

PACKAGE PATTERNS

 These patterns select specific packages.

 ?architecture(WILDCARD), ~rWILDCARD

 Selects packages matching the specified architecture, which may contain wildcards

 using any.

 ?automatic, ~M

 Selects packages that were installed automatically.

 ?broken, ~b

 Selects packages that have broken dependencies.

 ?config-files, ~c

 Selects packages that are not fully installed, but have solely residual configuration

 files left.

 ?essential, ~E

 Selects packages that have Essential: yes set in their control file.

 ?exact-name(NAME)

 Selects packages with the exact specified name.

 ?garbage, ~g

 Selects packages that can be removed automatically.

 ?installed, ~i

 Selects packages that are currently installed.

 ?name(REGEX), ~nREGEX

 Selects packages where the name matches the given regular expression. Page 2/5

 ?obsolete, ~o

 Selects packages that no longer exist in repositories.

 ?upgradable, ~U

 Selects packages that can be upgraded (have a newer candidate).

 ?virtual, ~v

 Selects all virtual packages; that is packages without a version. These exist when

 they are referenced somewhere in the archive, for example because something depends on

 that name.

VERSION PATTERNS

 These patterns select specific versions of a package.

 ?archive(REGEX), ~AREGEX

 Selects versions that come from the archive that matches the specified regular

 expression. Archive, here, means the values after a= in apt-cache policy.

 ?codename(REGEX)

 Selects versions that come from the codename that matches the specified regular

 expression. Codename, here, means the values after n= in apt-cache policy.

 ?origin(REGEX), ~OREGEX

 Selects versions that come from the origin that matches the specified regular

 expression. Origin, here, means the values after o= in apt-cache policy.

 ?section(REGEX), ~sREGEX

 Selects versions where the section matches the specified regular expression.

 ?source-package(REGEX), ~eREGEX

 Selects versions where the source package name matches the specified regular

 expression.

 ?source-version(REGEX)

 Selects versions where the source package version matches the specified regular

 expression.

 ?version(REGEX), ~VREGEX

 Selects versions where the version string matches the specified regular expression.

 ?priority(NAME), ~pNAME

 Selects versions where the Priority string equals the given name.

PACKAGE RELATIONSHIP PATTERNS

 These patterns match specific package versions that depend/conflict with some other Page 3/5

 packages.

 ?depends(PATTERN), ~DPATTERN, ?pre-depends(PATTERN), ~DPre-Depends:PATTERN,

 ?suggests(PATTERN), ~DSuggests:PATTERN, ?conflicts(PATTERN), ~DConflicts:PATTERN,

 ?replaces(PATTERN), ~DReplaces:PATTERN, ?obsoletes(PATTERN), ~DObsoletes:PATTERN,

 ?breaks(PATTERN), ~DBreaks:PATTERN, ?enhances(PATTERN), ~DEnhances:PATTERN

 Selects versions depending/pre-depending/suggesting/conflicting/etc on/with/ packages

 matching PATTERN.

 ?reverse-depType(PATTERN), ~RDepType:PATTERN

 Opposite of ?depends and friends - selects all packages that have reverse-dependencies

 (versions) matching PATTERN.

 depType is one of the dependency types such as depends, so that we don't have to

 repeat the entire list from the first paragraph here.

EXAMPLES

 apt remove ?garbage

 Remove all packages that are automatically installed and no longer needed - same as

 apt autoremove

 apt purge ?config-files

 Purge all packages that only have configuration files left

 apt list '~i !~M (~slibs|~sperl|~spython)'

 List all manually-installed packages in sections matching libs, perl, or python.

MIGRATING FROM APTITUDE

 Patterns in apt are heavily inspired by patterns in aptitude, but with some tweaks:

 ? Syntax is uniform: If there is an opening parenthesis after a term, it is always

 assumed to be the beginning of an argument list.

 In aptitude, a syntactic form "?foo(bar)" could mean "?and(?foo,bar)" if foo does not

 take an argument. In APT, this will cause an error.

 ? Not all patterns are supported.

 ? Some additional patterns are available, for example, for finding gstreamer codecs.

 ? Escaping terms with ~ is not supported.

 ? A trailing comma is allowed in argument lists

 ? ?narrow accepts infinite arguments

 ? foo cannot be used as a shortform for ?name(foo), as this can cause typos to go

 unnoticed: Consider ?and(...,~poptional): this requires the package to have required Page 4/5

 priority, but if you do not type the ~, it would require the package name to contain

 poptional.

 ? Grouping patterns with (...) or writing ?or(A,B) as A|B are not supported. We do not

 believe that the use of | is that common, and the grouping is not necessary without

 it.

 ? Dependency types for ~D and related operators need to be specified in the canonical

 case.

SEE ALSO

 apt-get(8), apt(8)

BUGS

 APT bug page[1]. If you wish to report a bug in APT, please see

 /usr/share/doc/debian/bug-reporting.txt or the reportbug(1) command.

AUTHOR

 APT was written by the APT team <apt@packages.debian.org>.

AUTHORS

 Jason Gunthorpe

 APT team

NOTES

 1. APT bug page

 http://bugs.debian.org/src:apt

APT 2.4.12 26 December 2021 APT-PATTERNS(7)

Page 5/5

