
Rocky Enterprise Linux 9.2 Manual Pages on command 'apg.1'

$ man apg.1

APG(1) User Manual APG(1)

NAME

 apg - generates several random passwords

SYNOPSIS

 apg [-a algorithm] [-M mode] [-E char_string] [-n num_of_pass] [-m min_pass_len] [-x

 max_pass_len] [-r dictfile] [-b filter_file] [-p min_substr_len] [-s] [-c cl_seed] [-d]

 [-y] [-l] [-t] [-q] [-h] [-v]

DESCRIPTION

 apg generates several random passwords. It uses several password generation algorithms

 (currently two) and a built-in pseudo random number generator.

 Default algorithm is pronounceable password generation algorithm designed by Morrie Gasser

 and described in A Random Word Generator For Pronounceable Passwords National Technical

 Information Service (NTIS) AD-A-017676. The original paper is very old and had never been

 put online, so I have to use NIST implementation described in FIPS-181.

 Another algorithm is simple random character generation algorithm, but it uses four user-

 defined symbol sets to produce random password. It means that user can choose type of sym?

 bols that should appear in password. Symbol sets are: numeric symbol set (0,...,9), capi?

 tal letters symbol set (A,...,Z), small letters symbol set (a,...,z) and special symbols

 symbol set (#,@,!,...).

 Built-in pseudo random number generator is an implementation of algorithm described in Ap?

 pendix C of ANSI X9.17 or RFC 1750 with exception that it uses CAST or SHA-1 instead of

 Triple DES. It uses local time with precision of microseconds (see gettimeofday(2)) and

 /dev/random (if available) to produce initial random seed. Page 1/5

 apg also have the ability to check generated password quality using dictionary. You can

 use this ability if you specify command-line options -r dictfile or -b filtername where

 dictfile is the dictionary file name and filtername is the name of Bloom filter file. In

 that dictionary you may place words (one per line) that should not appear as generated

 passwords. For example: user names, common words, etc. You even can use one of the dictio?

 naries that come with dictionary password crackers. Bloom filter file should be created

 with apgbfm(1) utility included in apg distribution. In future releases I plan to imple?

 ment some other techniques to check passwords (like pattern check) just to make life eas?

 ier.

OPTIONS

 Password generation modes options

 -a algorithm

 Use algorithm for password generation.

 0 - pronounceable password generation (default)

 1 - random character password generation

 -n num_of_pass

 Generate num_of_pass number of passwords. Default is 6.

 -m min_pass_len

 Generate password with minimum length min_pass_len. If min_pass_len > max_pass_len

 then max_pass_len = min_pass_len. Default minimum password length is 8.

 -x max_pass_len

 Generate password with maximum length max_pass_len. If min_pass_len > max_pass_len

 then max_pass_len = min_pass_len. Default maximum password length is 10.

 -M mode

 Use symbolsets specified with mode for password generation. mode is a text string

 consisting of characters S, s, N, n, C, c, L, l. Where:

 S Generator must use special symbol set for every generated password.

 s Generator should use special symbol set for password generation.

 N Generator must use numeral symbol set for every generated password.

 n Generator should use numeral symbol set for password generation.

 C Generator must use capital symbol set for every generated password.

 c Generator should use capital symbol set for password generation.

 L Generator must use small letters symbol set for every generated password Page 2/5

 (always present if pronounceable password generation algorithm is used).

 l Generator should use small letters symbol set for password generation.

 R,r Not supported any more. Use -E char_string option instead.

 mode can not be more than 4 characters in length.

 Note:

 Usage of L, M, S, C will slow down password generation process.

 Examples:

 -M sncl

 -M SNCL

 -M Cn

 -E char_string

 Exclude characters in char_string from password generation process (in pronounce?

 able password generation mode you can not exclude small letters). To include spe?

 cial symbols that can be recognized by shell (apostrophe, quotes, dollar sign,

 etc.) in char_string use the backslashed versions.

 Examples:

 Command apg -a 1 -M n -n 3 -m 8 -E 23456789 will generate a set of passwords that

 will look like this:

 10100110

 01111000

 11011101

 Command apg -a 1 -M nc -n 3 -m 26 -E GHIJKLMNOPQRSTUVWXYZ will generate a set of

 passwords that will look like this:

 16A1653CD4DE5E7BD9584A3476

 C8F78E06944AFD57FB9CB882BC

 8C8DF37CD792D36D056BBD5002

 Password quality control options

 -r dictfile

 Check generated passwords for their appearance in dictfile

 -b filter_file

 Check generated passwords for their appearance in filter_file. filter_file should

 be created with the apgbfm(1) utility.

 -p min_substr_len Page 3/5

 This option tells apg(1) to check every substring of the generated password for ap?

 pearance in filter_file. If any of such substrings would be found in the fil?

 ter_file then generated password would be rejected and apg(1) will generate another

 one. min_substr_len specifies minimum substring length to check. This option is

 active only if -b option is defined.

 Pseudo random number generator options

 -s Ask user for random sequence for password generation

 -c cl_seed

 Use cl_seed as a random seed for password generation. I use it when i have to gen?

 erate passwords in a shell script.

 Examples:

 -c /dev/urandom

 -c /tmp/seed_file

 Password output options

 -d Do NOT use any delimiters between generated passwords. I use it when i have to gen?

 erate passwords in a shell script.

 -y Print generated passwords and crypted passwords (see crypt(3))

 -q Quiet mode (do not print warnings)

 -l Spell generated passwords. Useful when you want to read generated password by tele?

 phone.

 WARNING: Think twice before read your password by phone.

 -t Print pronunciation for generated pronounceable password. Ignored if -a 1 is set.

 -h Print help information and exit

 -v Print version information and exit

DEFAULT OPTIONS

 apg -a 0 -M sncl -n 6 -x 10 -m 8 (new style)

 If you want to generate really secure passwords, you should use option -s. To simplify apg

 usage, you can write a small shell script. For example:

 [begin]----> pwgen.sh

 #!/bin/sh

 /usr/local/bin/apg -m 8 -x 12 -s

 [end]----> pwgen.sh

EXIT CODE Page 4/5

 On successful completion of its task, apg will complete with exit code 0. An exit code of

 -1 indicates an error occurred. Textual errors are written to the standard error stream.

DIAGNOSTICS

 If /dev/random is not available, apg will display a message about it.

FILES

 None.

BUGS

 None. If you've found one, please send bug description to the author.

SEE ALSO

 apgbfm(1)

AUTHOR

 Adel I. Mirzazhanov, <a-del@iname.com>

 Project home page: http://www.adel.nursat.kz/apg/

Automated Password Generator 2003 Aug 04 APG(1)

Page 5/5

