
Rocky Enterprise Linux 9.2 Manual Pages on command 'adjtimex.2'

$ man adjtimex.2

ADJTIMEX(2) Linux Programmer's Manual ADJTIMEX(2)

NAME

 adjtimex, clock_adjtime, ntp_adjtime - tune kernel clock

SYNOPSIS

 #include <sys/timex.h>

 int adjtimex(struct timex *buf);

 int clock_adjtime(clockid_t clk_id, struct timex *buf);

 int ntp_adjtime(struct timex *buf);

DESCRIPTION

 Linux uses David L. Mills' clock adjustment algorithm (see RFC 5905). The system call ad?

 jtimex() reads and optionally sets adjustment parameters for this algorithm. It takes a

 pointer to a timex structure, updates kernel parameters from (selected) field values, and

 returns the same structure updated with the current kernel values. This structure is de?

 clared as follows:

 struct timex {

 int modes; /* Mode selector */

 long offset; /* Time offset; nanoseconds, if STA_NANO

 status flag is set, otherwise

 microseconds */

 long freq; /* Frequency offset; see NOTES for units */

 long maxerror; /* Maximum error (microseconds) */

 long esterror; /* Estimated error (microseconds) */

 int status; /* Clock command/status */ Page 1/8

 long constant; /* PLL (phase-locked loop) time constant */

 long precision; /* Clock precision

 (microseconds, read-only) */

 long tolerance; /* Clock frequency tolerance (read-only);

 see NOTES for units */

 struct timeval time;

 /* Current time (read-only, except for

 ADJ_SETOFFSET); upon return, time.tv_usec

 contains nanoseconds, if STA_NANO status

 flag is set, otherwise microseconds */

 long tick; /* Microseconds between clock ticks */

 long ppsfreq; /* PPS (pulse per second) frequency

 (read-only); see NOTES for units */

 long jitter; /* PPS jitter (read-only); nanoseconds, if

 STA_NANO status flag is set, otherwise

 microseconds */

 int shift; /* PPS interval duration

 (seconds, read-only) */

 long stabil; /* PPS stability (read-only);

 see NOTES for units */

 long jitcnt; /* PPS count of jitter limit exceeded

 events (read-only) */

 long calcnt; /* PPS count of calibration intervals

 (read-only) */

 long errcnt; /* PPS count of calibration errors

 (read-only) */

 long stbcnt; /* PPS count of stability limit exceeded

 events (read-only) */

 int tai; /* TAI offset, as set by previous ADJ_TAI

 operation (seconds, read-only,

 since Linux 2.6.26) */

 /* Further padding bytes to allow for future expansion */

 }; Page 2/8

 The modes field determines which parameters, if any, to set. (As described later in this

 page, the constants used for ntp_adjtime() are equivalent but differently named.) It is a

 bit mask containing a bitwise-or combination of zero or more of the following bits:

 ADJ_OFFSET

 Set time offset from buf.offset. Since Linux 2.6.26, the supplied value is clamped

 to the range (-0.5s, +0.5s). In older kernels, an EINVAL error occurs if the sup?

 plied value is out of range.

 ADJ_FREQUENCY

 Set frequency offset from buf.freq. Since Linux 2.6.26, the supplied value is

 clamped to the range (-32768000, +32768000). In older kernels, an EINVAL error oc?

 curs if the supplied value is out of range.

 ADJ_MAXERROR

 Set maximum time error from buf.maxerror.

 ADJ_ESTERROR

 Set estimated time error from buf.esterror.

 ADJ_STATUS

 Set clock status bits from buf.status. A description of these bits is provided be?

 low.

 ADJ_TIMECONST

 Set PLL time constant from buf.constant. If the STA_NANO status flag (see below)

 is clear, the kernel adds 4 to this value.

 ADJ_SETOFFSET (since Linux 2.6.39)

 Add buf.time to the current time. If buf.status includes the ADJ_NANO flag, then

 buf.time.tv_usec is interpreted as a nanosecond value; otherwise it is interpreted

 as microseconds.

 The value of buf.time is the sum of its two fields, but the field buf.time.tv_usec

 must always be nonnegative. The following example shows how to normalize a timeval

 with nanosecond resolution.

 while (buf.time.tv_usec < 0) {

 buf.time.tv_sec -= 1;

 buf.time.tv_usec += 1000000000;

 }

 ADJ_MICRO (since Linux 2.6.26) Page 3/8

 Select microsecond resolution.

 ADJ_NANO (since Linux 2.6.26)

 Select nanosecond resolution. Only one of ADJ_MICRO and ADJ_NANO should be speci?

 fied.

 ADJ_TAI (since Linux 2.6.26)

 Set TAI (Atomic International Time) offset from buf.constant.

 ADJ_TAI should not be used in conjunction with ADJ_TIMECONST, since the latter mode

 also employs the buf.constant field.

 For a complete explanation of TAI and the difference between TAI and UTC, see BIPM

 ?http://www.bipm.org/en/bipm/tai/tai.html?

 ADJ_TICK

 Set tick value from buf.tick.

 Alternatively, modes can be specified as either of the following (multibit mask) values,

 in which case other bits should not be specified in modes:

 ADJ_OFFSET_SINGLESHOT

 Old-fashioned adjtime(3): (gradually) adjust time by value specified in buf.offset,

 which specifies an adjustment in microseconds.

 ADJ_OFFSET_SS_READ (functional since Linux 2.6.28)

 Return (in buf.offset) the remaining amount of time to be adjusted after an earlier

 ADJ_OFFSET_SINGLESHOT operation. This feature was added in Linux 2.6.24, but did

 not work correctly until Linux 2.6.28.

 Ordinary users are restricted to a value of either 0 or ADJ_OFFSET_SS_READ for modes.

 Only the superuser may set any parameters.

 The buf.status field is a bit mask that is used to set and/or retrieve status bits associ?

 ated with the NTP implementation. Some bits in the mask are both readable and settable,

 while others are read-only.

 STA_PLL (read-write)

 Enable phase-locked loop (PLL) updates via ADJ_OFFSET.

 STA_PPSFREQ (read-write)

 Enable PPS (pulse-per-second) frequency discipline.

 STA_PPSTIME (read-write)

 Enable PPS time discipline.

 STA_FLL (read-write) Page 4/8

 Select frequency-locked loop (FLL) mode.

 STA_INS (read-write)

 Insert a leap second after the last second of the UTC day, thus extending the last

 minute of the day by one second. Leap-second insertion will occur each day, so

 long as this flag remains set.

 STA_DEL (read-write)

 Delete a leap second at the last second of the UTC day. Leap second deletion will

 occur each day, so long as this flag remains set.

 STA_UNSYNC (read-write)

 Clock unsynchronized.

 STA_FREQHOLD (read-write)

 Hold frequency. Normally adjustments made via ADJ_OFFSET result in dampened fre?

 quency adjustments also being made. So a single call corrects the current offset,

 but as offsets in the same direction are made repeatedly, the small frequency ad?

 justments will accumulate to fix the long-term skew.

 This flag prevents the small frequency adjustment from being made when correcting

 for an ADJ_OFFSET value.

 STA_PPSSIGNAL (read-only)

 A valid PPS (pulse-per-second) signal is present.

 STA_PPSJITTER (read-only)

 PPS signal jitter exceeded.

 STA_PPSWANDER (read-only)

 PPS signal wander exceeded.

 STA_PPSERROR (read-only)

 PPS signal calibration error.

 STA_CLOCKERR (read-only)

 Clock hardware fault.

 STA_NANO (read-only; since Linux 2.6.26)

 Resolution (0 = microsecond, 1 = nanoseconds). Set via ADJ_NANO, cleared via

 ADJ_MICRO.

 STA_MODE (since Linux 2.6.26)

 Mode (0 = Phase Locked Loop, 1 = Frequency Locked Loop).

 STA_CLK (read-only; since Linux 2.6.26) Page 5/8

 Clock source (0 = A, 1 = B); currently unused.

 Attempts to set read-only status bits are silently ignored.

 clock_adjtime ()

 The clock_adjtime() system call (added in Linux 2.6.39) behaves like adjtimex() but takes

 an additional clk_id argument to specify the particular clock on which to act.

 ntp_adjtime ()

 The ntp_adjtime() library function (described in the NTP "Kernel Application Program API",

 KAPI) is a more portable interface for performing the same task as adjtimex(). Other than

 the following points, it is identical to adjtimex():

 * The constants used in modes are prefixed with "MOD_" rather than "ADJ_", and have the

 same suffixes (thus, MOD_OFFSET, MOD_FREQUENCY, and so on), other than the exceptions

 noted in the following points.

 * MOD_CLKA is the synonym for ADJ_OFFSET_SINGLESHOT.

 * MOD_CLKB is the synonym for ADJ_TICK.

 * The is no synonym for ADJ_OFFSET_SS_READ, which is not described in the KAPI.

RETURN VALUE

 On success, adjtimex() and ntp_adjtime() return the clock state; that is, one of the fol?

 lowing values:

 TIME_OK Clock synchronized, no leap second adjustment pending.

 TIME_INS Indicates that a leap second will be added at the end of the UTC day.

 TIME_DEL Indicates that a leap second will be deleted at the end of the UTC day.

 TIME_OOP Insertion of a leap second is in progress.

 TIME_WAIT A leap-second insertion or deletion has been completed. This value will be

 returned until the next ADJ_STATUS operation clears the STA_INS and STA_DEL

 flags.

 TIME_ERROR The system clock is not synchronized to a reliable server. This value is re?

 turned when any of the following holds true:

 * Either STA_UNSYNC or STA_CLOCKERR is set.

 * STA_PPSSIGNAL is clear and either STA_PPSFREQ or STA_PPSTIME is set.

 * STA_PPSTIME and STA_PPSJITTER are both set.

 * STA_PPSFREQ is set and either STA_PPSWANDER or STA_PPSJITTER is set.

 The symbolic name TIME_BAD is a synonym for TIME_ERROR, provided for backward

 compatibility. Page 6/8

 Note that starting with Linux 3.4, the call operates asynchronously and the return value

 usually will not reflect a state change caused by the call itself.

 On failure, these calls return -1 and set errno.

ERRORS

 EFAULT buf does not point to writable memory.

 EINVAL (kernels before Linux 2.6.26)

 An attempt was made to set buf.freq to a value outside the range (-33554432,

 +33554432).

 EINVAL (kernels before Linux 2.6.26)

 An attempt was made to set buf.offset to a value outside the permitted range. In

 kernels before Linux 2.0, the permitted range was (-131072, +131072). From Linux

 2.0 onwards, the permitted range was (-512000, +512000).

 EINVAL An attempt was made to set buf.status to a value other than those listed above.

 EINVAL The clk_id given to clock_adjtime() is invalid for one of two reasons. Either the

 System-V style hard-coded positive clock ID value is out of range, or the dynamic

 clk_id does not refer to a valid instance of a clock object. See clock_gettime(2)

 for a discussion of dynamic clocks.

 EINVAL An attempt was made to set buf.tick to a value outside the range 900000/HZ to

 1100000/HZ, where HZ is the system timer interrupt frequency.

 ENODEV The hot-pluggable device (like USB for example) represented by a dynamic clk_id has

 disappeared after its character device was opened. See clock_gettime(2) for a dis?

 cussion of dynamic clocks.

 EOPNOTSUPP

 The given clk_id does not support adjustment.

 EPERM buf.modes is neither 0 nor ADJ_OFFSET_SS_READ, and the caller does not have suffi?

 cient privilege. Under Linux, the CAP_SYS_TIME capability is required.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?ntp_adjtime() ? Thread safety ? MT-Safe ?

 ?? Page 7/8

CONFORMING TO

 None of these interfaces is described in POSIX.1

 adjtimex() and clock_adjtime() are Linux-specific and should not be used in programs in?

 tended to be portable.

 The preferred API for the NTP daemon is ntp_adjtime().

NOTES

 In struct timex, freq, ppsfreq, and stabil are ppm (parts per million) with a 16-bit frac?

 tional part, which means that a value of 1 in one of those fields actually means 2^-16

 ppm, and 2^16=65536 is 1 ppm. This is the case for both input values (in the case of

 freq) and output values.

 The leap-second processing triggered by STA_INS and STA_DEL is done by the kernel in timer

 context. Thus, it will take one tick into the second for the leap second to be inserted

 or deleted.

SEE ALSO

 clock_gettime(2), clock_settime(2), settimeofday(2), adjtime(3), ntp_gettime(3), capabili?

 ties(7), time(7), adjtimex(8), hwclock(8)

 NTP "Kernel Application Program Interface" ?http://www.slac.stanford.edu/comp/unix/

 package/rtems/src/ssrlApps/ntpNanoclock/api.htm?

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 ADJTIMEX(2)

Page 8/8

