
Rocky Enterprise Linux 9.2 Manual Pages on command 'acl.5'

$ man acl.5

ACL(5) BSD File Formats Manual ACL(5)

NAME

 acl ? Access Control Lists

DESCRIPTION

 This manual page describes POSIX Access Control Lists, which are used to define more fine-

 grained discretionary access rights for files and directories.

ACL TYPES

 Every object can be thought of as having associated with it an ACL that governs the discre?

 tionary access to that object; this ACL is referred to as an access ACL. In addition, a di?

 rectory may have an associated ACL that governs the initial access ACL for objects created

 within that directory; this ACL is referred to as a default ACL.

ACL ENTRIES

 An ACL consists of a set of ACL entries. An ACL entry specifies the access permissions on

 the associated object for an individual user or a group of users as a combination of read,

 write and search/execute permissions.

 An ACL entry contains an entry tag type, an optional entry tag qualifier, and a set of per?

 missions. We use the term qualifier to denote the entry tag qualifier of an ACL entry.

 The qualifier denotes the identifier of a user or a group, for entries with tag types of

 ACL_USER or ACL_GROUP, respectively. Entries with tag types other than ACL_USER or ACL_GROUP

 have no defined qualifiers.

 The following entry tag types are defined:

 ACL_USER_OBJ The ACL_USER_OBJ entry denotes access rights for the file owner.

 ACL_USER ACL_USER entries denote access rights for users identified by the en? Page 1/7

 try's qualifier.

 ACL_GROUP_OBJ The ACL_GROUP_OBJ entry denotes access rights for the file group.

 ACL_GROUP ACL_GROUP entries denote access rights for groups identified by the

 entry's qualifier.

 ACL_MASK The ACL_MASK entry denotes the maximum access rights that can be

 granted by entries of type ACL_USER, ACL_GROUP_OBJ, or ACL_GROUP.

 ACL_OTHER The ACL_OTHER entry denotes access rights for processes that do not

 match any other entry in the ACL.

 When an access check is performed, the ACL_USER_OBJ and ACL_USER entries are tested against

 the effective user ID. The effective group ID, as well as all supplementary group IDs are

 tested against the ACL_GROUP_OBJ and ACL_GROUP entries.

VALID ACLs

 A valid ACL contains exactly one entry with each of the ACL_USER_OBJ, ACL_GROUP_OBJ, and

 ACL_OTHER tag types. Entries with ACL_USER and ACL_GROUP tag types may appear zero or more

 times in an ACL. An ACL that contains entries of ACL_USER or ACL_GROUP tag types must con?

 tain exactly one entry of the ACL_MASK tag type. If an ACL contains no entries of ACL_USER

 or ACL_GROUP tag types, the ACL_MASK entry is optional.

 All user ID qualifiers must be unique among all entries of ACL_USER tag type, and all group

 IDs must be unique among all entries of ACL_GROUP tag type.

 The acl_get_file() function returns an ACL with zero ACL entries as the default ACL of a

 directory, if the directory is not associated with a default ACL. The acl_set_file() func?

 tion also accepts an ACL with zero ACL entries as a valid default ACL for directories, de?

 noting that the directory shall not be associated with a default ACL. This is equivalent to

 using the acl_delete_def_file() function.

CORRESPONDENCE BETWEEN ACL ENTRIES AND FILE PERMISSION BITS

 The permissions defined by ACLs are a superset of the permissions specified by the file per?

 mission bits.

 There is a correspondence between the file owner, group, and other permissions and specific

 ACL entries: the owner permissions correspond to the permissions of the ACL_USER_OBJ entry.

 If the ACL has an ACL_MASK entry, the group permissions correspond to the permissions of the

 ACL_MASK entry. Otherwise, if the ACL has no ACL_MASK entry, the group permissions corre?

 spond to the permissions of the ACL_GROUP_OBJ entry. The other permissions correspond to

 the permissions of the ACL_OTHER entry. Page 2/7

 The file owner, group, and other permissions always match the permissions of the correspond?

 ing ACL entry. Modification of the file permission bits results in the modification of the

 associated ACL entries, and modification of these ACL entries results in the modification of

 the file permission bits.

OBJECT CREATION AND DEFAULT ACLs

 The access ACL of a file object is initialized when the object is created with any of the

 creat(), mkdir(), mknod(), mkfifo(), or open() functions. If a default ACL is associated

 with a directory, the mode parameter to the functions creating file objects and the default

 ACL of the directory are used to determine the ACL of the new object:

 1. The new object inherits the default ACL of the containing directory as its access ACL.

 2. The access ACL entries corresponding to the file permission bits are modified so that

 they contain no permissions that are not contained in the permissions specified by the

 mode parameter.

 If no default ACL is associated with a directory, the mode parameter to the functions creat?

 ing file objects and the file creation mask (see umask(2)) are used to determine the ACL of

 the new object:

 1. The new object is assigned an access ACL containing entries of tag types ACL_USER_OBJ,

 ACL_GROUP_OBJ, and ACL_OTHER. The permissions of these entries are set to the permis?

 sions specified by the file creation mask.

 2. The access ACL entries corresponding to the file permission bits are modified so that

 they contain no permissions that are not contained in the permissions specified by the

 mode parameter.

ACCESS CHECK ALGORITHM

 A process may request read, write, or execute/search access to a file object protected by an

 ACL. The access check algorithm determines whether access to the object will be granted.

 1. If the effective user ID of the process matches the user ID of the file object owner,

 then

 if the ACL_USER_OBJ entry contains the requested permissions, access is granted,

 else access is denied.

 2. else if the effective user ID of the process matches the qualifier of any entry of type

 ACL_USER, then

 if the matching ACL_USER entry and the ACL_MASK entry contain the requested per?

 missions, access is granted, Page 3/7

 else access is denied.

 3. else if the effective group ID or any of the supplementary group IDs of the process

 match the file group or the qualifier of any entry of type ACL_GROUP, then

 if the ACL contains an ACL_MASK entry, then

 if the ACL_MASK entry and any of the matching ACL_GROUP_OBJ or ACL_GROUP

 entries contain the requested permissions, access is granted,

 else access is denied.

 else (note that there can be no ACL_GROUP entries without an ACL_MASK entry)

 if the ACL_GROUP_OBJ entry contains the requested permissions, access is

 granted,

 else access is denied.

 4. else if the ACL_OTHER entry contains the requested permissions, access is granted.

 5. else access is denied.

ACL TEXT FORMS

 A long and a short text form for representing ACLs is defined. In both forms, ACL entries

 are represented as three colon separated fields: an ACL entry tag type, an ACL entry quali?

 fier, and the discretionary access permissions. The first field contains one of the follow?

 ing entry tag type keywords:

 user A user ACL entry specifies the access granted to either the file owner (entry

 tag type ACL_USER_OBJ) or a specified user (entry tag type ACL_USER).

 group A group ACL entry specifies the access granted to either the file group (entry

 tag type ACL_GROUP_OBJ) or a specified group (entry tag type ACL_GROUP).

 mask A mask ACL entry specifies the maximum access which can be granted by any ACL

 entry except the user entry for the file owner and the other entry (entry tag

 type ACL_MASK).

 other An other ACL entry specifies the access granted to any process that does not

 match any user or group ACL entries (entry tag type ACL_OTHER).

 The second field contains the user or group identifier of the user or group associated with

 the ACL entry for entries of entry tag type ACL_USER or ACL_GROUP, and is empty for all

 other entries. A user identifier can be a user name or a user ID number in decimal form. A

 group identifier can be a group name or a group ID number in decimal form.

 The third field contains the discretionary access permissions. The read, write and

 search/execute permissions are represented by the r, w, and x characters, in this order. Page 4/7

 Each of these characters is replaced by the - character to denote that a permission is ab?

 sent in the ACL entry. When converting from the text form to the internal representation,

 permissions that are absent need not be specified.

 White space is permitted at the beginning and end of each ACL entry, and immediately before

 and after a field separator (the colon character).

 LONG TEXT FORM

 The long text form contains one ACL entry per line. In addition, a number sign (#) may start

 a comment that extends until the end of the line. If an ACL_USER, ACL_GROUP_OBJ or ACL_GROUP

 ACL entry contains permissions that are not also contained in the ACL_MASK entry, the entry

 is followed by a number sign, the string ?effective:?, and the effective access permissions

 defined by that entry. This is an example of the long text form:

 user::rw-

 user:lisa:rw- #effective:r--

 group::r--

 group:toolies:rw- #effective:r--

 mask::r--

 other::r--

 SHORT TEXT FORM

 The short text form is a sequence of ACL entries separated by commas, and is used for input.

 Comments are not supported. Entry tag type keywords may either appear in their full unabbre?

 viated form, or in their single letter abbreviated form. The abbreviation for user is u, the

 abbreviation for group is g, the abbreviation for mask is m, and the abbreviation for other

 is o. The permissions may contain at most one each of the following characters in any or?

 der: r, w, x. These are examples of the short text form:

 u::rw-,u:lisa:rw-,g::r--,g:toolies:rw-,m::r--,o::r--

 g:toolies:rw,u:lisa:rw,u::wr,g::r,o::r,m::r

RATIONALE

 IEEE 1003.1e draft 17 defines Access Control Lists that include entries of tag type

 ACL_MASK, and defines a mapping between file permission bits that is not constant. The stan?

 dard working group defined this relatively complex interface in order to ensure that appli?

 cations that are compliant with IEEE 1003.1 (?POSIX.1?) will still function as expected on

 systems with ACLs. The IEEE 1003.1e draft 17 contains the rationale for choosing this inter?

 face in section B.23. Page 5/7

CHANGES TO THE FILE UTILITIES

 On a system that supports ACLs, the file utilities ls(1), cp(1), and mv(1) change their be?

 havior in the following way:

 ? For files that have a default ACL or an access ACL that contains more than the three re?

 quired ACL entries, the ls(1) utility in the long form produced by ls -l displays a plus

 sign (+) after the permission string.

 ? If the -p flag is specified, the cp(1) utility also preserves ACLs. If this is not pos?

 sible, a warning is produced.

 ? The mv(1) utility always preserves ACLs. If this is not possible, a warning is pro?

 duced.

 The effect of the chmod(1) utility, and of the chmod(2) system call, on the access ACL is

 described in CORRESPONDENCE BETWEEN ACL ENTRIES AND FILE PERMISSION BITS.

STANDARDS

 The IEEE 1003.1e draft 17 (?POSIX.1e?) document describes several security extensions to the

 IEEE 1003.1 standard. While the work on 1003.1e has been abandoned, many UNIX style systems

 implement parts of POSIX.1e draft 17, or of earlier drafts.

 Linux Access Control Lists implement the full set of functions and utilities defined for Ac?

 cess Control Lists in POSIX.1e, and several extensions. The implementation is fully compli?

 ant with POSIX.1e draft 17; extensions are marked as such. The Access Control List manipu?

 lation functions are defined in the ACL library (libacl, -lacl). The POSIX compliant inter?

 faces are declared in the <sys/acl.h> header. Linux-specific extensions to these functions

 are declared in the <acl/libacl.h> header.

SEE ALSO

 chmod(1), creat(2), getfacl(1), ls(1), mkdir(2), mkfifo(2), mknod(2), mount(8), open(2),

 setfacl(1), stat(2), umask(1)

 POSIX 1003.1e DRAFT 17

 http://wt.tuxomania.net/publications/posix.1e/download.html

 POSIX 1003.1e FUNCTIONS BY CATEGORY

 ACL storage management

 acl_dup(3), acl_free(3), acl_init(3)

 ACL entry manipulation

 acl_copy_entry(3), acl_create_entry(3), acl_delete_entry(3), acl_get_entry(3),

 acl_valid(3) Page 6/7

 acl_add_perm(3), acl_calc_mask(3), acl_clear_perms(3), acl_delete_perm(3),

 acl_get_permset(3), acl_set_permset(3)

 acl_get_qualifier(3), acl_get_tag_type(3), acl_set_qualifier(3), acl_set_tag_type(3)

 ACL manipulation on an object

 acl_delete_def_file(3), acl_get_fd(3), acl_get_file(3), acl_set_fd(3), acl_set_file(3)

 ACL format translation

 acl_copy_entry(3), acl_copy_ext(3), acl_from_text(3), acl_to_text(3), acl_size(3)

 POSIX 1003.1e FUNCTIONS BY AVAILABILITY

 The first group of functions is supported on most systems with POSIX-like access control

 lists, while the second group is supported on fewer systems. For applications that will be

 ported the second group is best avoided.

 acl_delete_def_file(3), acl_dup(3), acl_free(3), acl_from_text(3), acl_get_fd(3),

 acl_get_file(3), acl_init(3), acl_set_fd(3), acl_set_file(3), acl_to_text(3), acl_valid(3)

 acl_add_perm(3), acl_calc_mask(3), acl_clear_perms(3), acl_copy_entry(3), acl_copy_ext(3),

 acl_copy_int(3), acl_create_entry(3), acl_delete_entry(3), acl_delete_perm(3),

 acl_get_entry(3), acl_get_permset(3), acl_get_qualifier(3), acl_get_tag_type(3),

 acl_set_permset(3), acl_set_qualifier(3), acl_set_tag_type(3), acl_size(3)

 LINUX EXTENSIONS

 These non-portable extensions are available on Linux systems.

 acl_check(3), acl_cmp(3), acl_entries(3), acl_equiv_mode(3), acl_error(3),

 acl_extended_fd(3), acl_extended_file(3), acl_extended_file_nofollow(3), acl_from_mode(3),

 acl_get_perm(3), acl_to_any_text(3)

AUTHOR

 Andreas Gruenbacher, <andreas.gruenbacher@gmail.com>

Linux ACL March 23, 2002 Linux ACL

Page 7/7

