
Rocky Enterprise Linux 9.2 Manual Pages on command 'accept4.2'

$ man accept4.2

ACCEPT(2) Linux Programmer's Manual ACCEPT(2)

NAME

 accept, accept4 - accept a connection on a socket

SYNOPSIS

 #include <sys/types.h> /* See NOTES */

 #include <sys/socket.h>

 int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <sys/socket.h>

 int accept4(int sockfd, struct sockaddr *addr,

 socklen_t *addrlen, int flags);

DESCRIPTION

 The accept() system call is used with connection-based socket types (SOCK_STREAM, SOCK_SE?

 QPACKET). It extracts the first connection request on the queue of pending connections

 for the listening socket, sockfd, creates a new connected socket, and returns a new file

 descriptor referring to that socket. The newly created socket is not in the listening

 state. The original socket sockfd is unaffected by this call.

 The argument sockfd is a socket that has been created with socket(2), bound to a local ad?

 dress with bind(2), and is listening for connections after a listen(2).

 The argument addr is a pointer to a sockaddr structure. This structure is filled in with

 the address of the peer socket, as known to the communications layer. The exact format of

 the address returned addr is determined by the socket's address family (see socket(2) and

 the respective protocol man pages). When addr is NULL, nothing is filled in; in this Page 1/5

 case, addrlen is not used, and should also be NULL.

 The addrlen argument is a value-result argument: the caller must initialize it to contain

 the size (in bytes) of the structure pointed to by addr; on return it will contain the ac?

 tual size of the peer address.

 The returned address is truncated if the buffer provided is too small; in this case, ad?

 drlen will return a value greater than was supplied to the call.

 If no pending connections are present on the queue, and the socket is not marked as non?

 blocking, accept() blocks the caller until a connection is present. If the socket is

 marked nonblocking and no pending connections are present on the queue, accept() fails

 with the error EAGAIN or EWOULDBLOCK.

 In order to be notified of incoming connections on a socket, you can use select(2),

 poll(2), or epoll(7). A readable event will be delivered when a new connection is at?

 tempted and you may then call accept() to get a socket for that connection. Alterna?

 tively, you can set the socket to deliver SIGIO when activity occurs on a socket; see

 socket(7) for details.

 If flags is 0, then accept4() is the same as accept(). The following values can be bit?

 wise ORed in flags to obtain different behavior:

 SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the open file description (see

 open(2)) referred to by the new file descriptor. Using this flag saves

 extra calls to fcntl(2) to achieve the same result.

 SOCK_CLOEXEC Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See

 the description of the O_CLOEXEC flag in open(2) for reasons why this may

 be useful.

RETURN VALUE

 On success, these system calls return a file descriptor for the accepted socket (a nonneg?

 ative integer). On error, -1 is returned, errno is set appropriately, and addrlen is left

 unchanged.

 Error handling

 Linux accept() (and accept4()) passes already-pending network errors on the new socket as

 an error code from accept(). This behavior differs from other BSD socket implementations.

 For reliable operation the application should detect the network errors defined for the

 protocol after accept() and treat them like EAGAIN by retrying. In the case of TCP/IP,

 these are ENETDOWN, EPROTO, ENOPROTOOPT, EHOSTDOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP,Page 2/5

and

 ENETUNREACH.

ERRORS

 EAGAIN or EWOULDBLOCK

 The socket is marked nonblocking and no connections are present to be accepted.

 POSIX.1-2001 and POSIX.1-2008 allow either error to be returned for this case, and

 do not require these constants to have the same value, so a portable application

 should check for both possibilities.

 EBADF sockfd is not an open file descriptor.

 ECONNABORTED

 A connection has been aborted.

 EFAULT The addr argument is not in a writable part of the user address space.

 EINTR The system call was interrupted by a signal that was caught before a valid connec?

 tion arrived; see signal(7).

 EINVAL Socket is not listening for connections, or addrlen is invalid (e.g., is negative).

 EINVAL (accept4()) invalid value in flags.

 EMFILE The per-process limit on the number of open file descriptors has been reached.

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENOBUFS, ENOMEM

 Not enough free memory. This often means that the memory allocation is limited by

 the socket buffer limits, not by the system memory.

 ENOTSOCK

 The file descriptor sockfd does not refer to a socket.

 EOPNOTSUPP

 The referenced socket is not of type SOCK_STREAM.

 EPROTO Protocol error.

 In addition, Linux accept() may fail if:

 EPERM Firewall rules forbid connection.

 In addition, network errors for the new socket and as defined for the protocol may be re?

 turned. Various Linux kernels can return other errors such as ENOSR, ESOCKTNOSUPPORT,

 EPROTONOSUPPORT, ETIMEDOUT. The value ERESTARTSYS may be seen during a trace.

VERSIONS

 The accept4() system call is available starting with Linux 2.6.28; support in glibc is Page 3/5

 available starting with version 2.10.

CONFORMING TO

 accept(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD (accept() first appeared in 4.2BSD).

 accept4() is a nonstandard Linux extension.

 On Linux, the new socket returned by accept() does not inherit file status flags such as

 O_NONBLOCK and O_ASYNC from the listening socket. This behavior differs from the canoni?

 cal BSD sockets implementation. Portable programs should not rely on inheritance or non?

 inheritance of file status flags and always explicitly set all required flags on the

 socket returned from accept().

NOTES

 POSIX.1-2001 does not require the inclusion of <sys/types.h>, and this header file is not

 required on Linux. However, some historical (BSD) implementations required this header

 file, and portable applications are probably wise to include it.

 There may not always be a connection waiting after a SIGIO is delivered or select(2),

 poll(2), or epoll(7) return a readability event because the connection might have been re?

 moved by an asynchronous network error or another thread before accept() is called. If

 this happens, then the call will block waiting for the next connection to arrive. To en?

 sure that accept() never blocks, the passed socket sockfd needs to have the O_NONBLOCK

 flag set (see socket(7)).

 For certain protocols which require an explicit confirmation, such as DECnet, accept() can

 be thought of as merely dequeuing the next connection request and not implying confirma?

 tion. Confirmation can be implied by a normal read or write on the new file descriptor,

 and rejection can be implied by closing the new socket. Currently, only DECnet has these

 semantics on Linux.

 The socklen_t type

 In the original BSD sockets implementation (and on other older systems) the third argument

 of accept() was declared as an int *. A POSIX.1g draft standard wanted to change it into

 a size_t *C; later POSIX standards and glibc 2.x have socklen_t * .

EXAMPLES

 See bind(2).

SEE ALSO

 bind(2), connect(2), listen(2), select(2), socket(2), socket(7)

COLOPHON Page 4/5

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 ACCEPT(2)

Page 5/5

