
Rocky Enterprise Linux 9.2 Manual Pages on command '_sysctl.2'

$ man _sysctl.2

SYSCTL(2) Linux Programmer's Manual SYSCTL(2)

NAME

 sysctl - read/write system parameters

SYNOPSIS

 #include <unistd.h>

 #include <linux/sysctl.h>

 int _sysctl(struct __sysctl_args *args);

DESCRIPTION

 This system call no longer exists on current kernels! See NOTES.

 The _sysctl() call reads and/or writes kernel parameters. For example, the hostname, or

 the maximum number of open files. The argument has the form

 struct __sysctl_args {

 int *name; /* integer vector describing variable */

 int nlen; /* length of this vector */

 void *oldval; /* 0 or address where to store old value */

 size_t *oldlenp; /* available room for old value,

 overwritten by actual size of old value */

 void *newval; /* 0 or address of new value */

 size_t newlen; /* size of new value */

 };

 This call does a search in a tree structure, possibly resembling a directory tree under

 /proc/sys, and if the requested item is found calls some appropriate routine to read or

 modify the value. Page 1/4

RETURN VALUE

 Upon successful completion, _sysctl() returns 0. Otherwise, a value of -1 is returned and

 errno is set to indicate the error.

ERRORS

 EACCES, EPERM

 No search permission for one of the encountered "directories", or no read permis?

 sion where oldval was nonzero, or no write permission where newval was nonzero.

 EFAULT The invocation asked for the previous value by setting oldval non-NULL, but allowed

 zero room in oldlenp.

 ENOTDIR

 name was not found.

VERSIONS

 This system call first appeared in Linux 1.3.57. It was removed in Linux 5.5; glibc sup?

 port was removed in version 2.32.

CONFORMING TO

 This call is Linux-specific, and should not be used in programs intended to be portable.

 It originated in 4.4BSD. Only Linux has the /proc/sys mirror, and the object naming

 schemes differ between Linux and 4.4BSD, but the declaration of the sysctl() function is

 the same in both.

NOTES

 Use of this system call was long discouraged: since Linux 2.6.24, uses of this system call

 result in warnings in the kernel log, and in Linux 5.5, the system call was finally re?

 moved. Use the /proc/sys interface instead.

 Note that on older kernels where this system call still exists, it is available only if

 the kernel was configured with the CONFIG_SYSCTL_SYSCALL option. Furthermore, glibc does

 not provide a wrapper for this system call, necessitating the use of syscall(2).

BUGS

 The object names vary between kernel versions, making this system call worthless for ap?

 plications.

 Not all available objects are properly documented.

 It is not yet possible to change operating system by writing to /proc/sys/kernel/ostype.

EXAMPLES

 #define _GNU_SOURCE Page 2/4

 #include <unistd.h>

 #include <sys/syscall.h>

 #include <string.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <linux/sysctl.h>

 int _sysctl(struct __sysctl_args *args);

 #define OSNAMESZ 100

 int

 main(void)

 {

 struct __sysctl_args args;

 char osname[OSNAMESZ];

 size_t osnamelth;

 int name[] = { CTL_KERN, KERN_OSTYPE };

 memset(&args, 0, sizeof(args));

 args.name = name;

 args.nlen = sizeof(name)/sizeof(name[0]);

 args.oldval = osname;

 args.oldlenp = &osnamelth;

 osnamelth = sizeof(osname);

 if (syscall(SYS__sysctl, &args) == -1) {

 perror("_sysctl");

 exit(EXIT_FAILURE);

 }

 printf("This machine is running %*s\n", osnamelth, osname);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 proc(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be Page 3/4

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SYSCTL(2)

Page 4/4

