
Rocky Enterprise Linux 9.2 Manual Pages on command '_syscall.2'

$ man _syscall.2

_SYSCALL(2) Linux Programmer's Manual _SYSCALL(2)

NAME

 _syscall - invoking a system call without library support (OBSOLETE)

SYNOPSIS

 #include <linux/unistd.h>

 A _syscall macro

 desired system call

DESCRIPTION

 The important thing to know about a system call is its prototype. You need to know how

 many arguments, their types, and the function return type. There are seven macros that

 make the actual call into the system easier. They have the form:

 _syscallX(type,name,type1,arg1,type2,arg2,...)

 where

 X is 0?6, which are the number of arguments taken by the system call

 type is the return type of the system call

 name is the name of the system call

 typeN is the Nth argument's type

 argN is the name of the Nth argument

 These macros create a function called name with the arguments you specify. Once you in?

 clude the _syscall() in your source file, you call the system call by name.

FILES

 /usr/include/linux/unistd.h

CONFORMING TO Page 1/3

 The use of these macros is Linux-specific, and deprecated.

NOTES

 Starting around kernel 2.6.18, the _syscall macros were removed from header files supplied

 to user space. Use syscall(2) instead. (Some architectures, notably ia64, never provided

 the _syscall macros; on those architectures, syscall(2) was always required.)

 The _syscall() macros do not produce a prototype. You may have to create one, especially

 for C++ users.

 System calls are not required to return only positive or negative error codes. You need

 to read the source to be sure how it will return errors. Usually, it is the negative of a

 standard error code, for example, -EPERM. The _syscall() macros will return the result r

 of the system call when r is nonnegative, but will return -1 and set the variable errno to

 -r when r is negative. For the error codes, see errno(3).

 When defining a system call, the argument types must be passed by-value or by-pointer (for

 aggregates like structs).

EXAMPLES

 #include <stdio.h>

 #include <stdlib.h>

 #include <errno.h>

 #include <linux/unistd.h> /* for _syscallX macros/related stuff */

 #include <linux/kernel.h> /* for struct sysinfo */

 _syscall1(int, sysinfo, struct sysinfo *, info);

 int

 main(void)

 {

 struct sysinfo s_info;

 int error;

 error = sysinfo(&s_info);

 printf("code error = %d\n", error);

 printf("Uptime = %lds\nLoad: 1 min %lu / 5 min %lu / 15 min %lu\n"

 "RAM: total %lu / free %lu / shared %lu\n"

 "Memory in buffers = %lu\nSwap: total %lu / free %lu\n"

 "Number of processes = %d\n",

 s_info.uptime, s_info.loads[0], Page 2/3

 s_info.loads[1], s_info.loads[2],

 s_info.totalram, s_info.freeram,

 s_info.sharedram, s_info.bufferram,

 s_info.totalswap, s_info.freeswap,

 s_info.procs);

 exit(EXIT_SUCCESS);

 }

 Sample output

 code error = 0

 uptime = 502034s

 Load: 1 min 13376 / 5 min 5504 / 15 min 1152

 RAM: total 15343616 / free 827392 / shared 8237056

 Memory in buffers = 5066752

 Swap: total 27881472 / free 24698880

 Number of processes = 40

SEE ALSO

 intro(2), syscall(2), errno(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 _SYSCALL(2)

Page 3/3

