
Rocky Enterprise Linux 9.2 Manual Pages on command 'X.7'

$ man X.7

X(7) Miscellaneous Information Manual X(7)

NAME

 X - a portable, network-transparent window system

OVERVIEW

 The X Window System is a network transparent window system which runs on a wide range of

 computing and graphics machines. It should be relatively straightforward to build the

 X.Org Foundation software distribution on most ANSI C and POSIX compliant systems. Com?

 mercial implementations are also available for a wide range of platforms.

 The X.Org Foundation requests that the following names be used when referring to this

 software:

 X

 X Window System

 X Version 11

 X Window System, Version 11

 X11

 X Window System is a trademark of The Open Group.

DESCRIPTION

 X Window System servers run on computers with bitmap displays. The server distributes

 user input to and accepts output requests from various client programs through a variety

 of different interprocess communication channels. Although the most common case is for

 the client programs to be running on the same machine as the server, clients can be run

 transparently from other machines (including machines with different architectures and op?

 erating systems) as well. Page 1/24

 X supports overlapping hierarchical subwindows and text and graphics operations, on both

 monochrome and color displays. For a full explanation of the functions that are avail?

 able, see the Xlib - C Language X Interface manual, the X Window System Protocol specifi?

 cation, the X Toolkit Intrinsics - C Language Interface manual, and various toolkit docu?

 ments.

 The number of programs that use X is quite large. Programs provided in the core X.Org

 Foundation distribution include: a terminal emulator, xterm; a window manager, twm; a dis?

 play manager, xdm; a console redirect program, xconsole; a mail interface, xmh; a bitmap

 editor, bitmap; resource listing/manipulation tools, appres, editres; access control pro?

 grams, xauth, xhost, and iceauth; user preference setting programs, xrdb, xcmsdb, xset,

 xsetroot, xstdcmap, and xmodmap; clocks, xclock and oclock; a font displayer, xfd; utili?

 ties for listing information about fonts, windows, and displays, xlsfonts, xwininfo,

 xlsclients, xdpyinfo, xlsatoms, and xprop; screen image manipulation utilities, xwd, xwud,

 and xmag; a performance measurement utility, x11perf; a font compiler, bdftopcf; a font

 server and related utilities, xfs, fsinfo, fslsfonts, fstobdf; a display server and re?

 lated utilities, Xserver, rgb, mkfontdir; a clipboard manager, xclipboard; keyboard de?

 scription compiler and related utilities, xkbcomp, setxkbmap xkbprint, xkbbell, xkbevd,

 xkbvleds, and xkbwatch; a utility to terminate clients, xkill; a firewall security proxy,

 xfwp; a proxy manager to control them, proxymngr; a utility to find proxies, xfindproxy;

 web browser plug-ins, libxrx.so and libxrxnest.so; an RX MIME-type helper program, xrx;

 and a utility to cause part or all of the screen to be redrawn, xrefresh.

 Many other utilities, window managers, games, toolkits, etc. are included as user-contrib?

 uted software in the X.Org Foundation distribution, or are available on the Internet. See

 your site administrator for details.

STARTING UP

 There are two main ways of getting the X server and an initial set of client applications

 started. The particular method used depends on what operating system you are running and

 whether or not you use other window systems in addition to X.

 Display Manager

 If you want to always have X running on your display, your site administrator can

 set your machine up to use a Display Manager such as xdm, gdm, or kdm. This pro?

 gram is typically started by the system at boot time and takes care of keeping the

 server running and getting users logged in. If you are running one of these dis? Page 2/24

 play managers, you will normally see a window on the screen welcoming you to the

 system and asking for your login information. Simply type them in as you would at

 a normal terminal. If you make a mistake, the display manager will display an er?

 ror message and ask you to try again. After you have successfully logged in, the

 display manager will start up your X environment. The documentation for the dis?

 play manager you use can provide more details.

 xinit (run manually from the shell)

 Sites that support more than one window system might choose to use the xinit pro?

 gram for starting X manually. If this is true for your machine, your site admin?

 istrator will probably have provided a program named "x11", "startx", or "xstart"

 that will do site-specific initialization (such as loading convenient default re?

 sources, running a window manager, displaying a clock, and starting several termi?

 nal emulators) in a nice way. If not, you can build such a script using the xinit

 program. This utility simply runs one user-specified program to start the server,

 runs another to start up any desired clients, and then waits for either to finish.

 Since either or both of the user-specified programs may be a shell script, this

 gives substantial flexibility at the expense of a nice interface. For this rea?

 son, xinit is not intended for end users.

DISPLAY NAMES

 From the user's perspective, every X server has a display name of the form:

 hostname:displaynumber.screennumber

 This information is used by the application to determine how it should connect to the

 server and which screen it should use by default (on displays with multiple monitors):

 hostname

 The hostname specifies the name of the machine to which the display is physically

 connected. If the hostname is not given, the most efficient way of communicating

 to a server on the same machine will be used.

 displaynumber

 The phrase "display" is usually used to refer to a collection of monitors that

 share a common set of input devices (keyboard, mouse, tablet, etc.). Most work?

 stations tend to only have one display. Larger, multi-user systems, however, fre?

 quently have several displays so that more than one person can be doing graphics

 work at once. To avoid confusion, each display on a machine is assigned a display Page 3/24

 number (beginning at 0) when the X server for that display is started. The dis?

 play number must always be given in a display name.

 screennumber

 Some displays share their input devices among two or more monitors. These may be

 configured as a single logical screen, which allows windows to move across

 screens, or as individual screens, each with their own set of windows. If config?

 ured such that each monitor has its own set of windows, each screen is assigned a

 screen number (beginning at 0) when the X server for that display is started. If

 the screen number is not given, screen 0 will be used.

 On POSIX systems, the default display name is stored in your DISPLAY environment variable.

 This variable is set automatically by the xterm terminal emulator. However, when you log

 into another machine on a network, you may need to set DISPLAY by hand to point to your

 display. For example,

 % setenv DISPLAY myws:0

 $ DISPLAY=myws:0; export DISPLAY

 The ssh program can be used to start an X program on a remote machine; it automatically

 sets the DISPLAY variable correctly.

 Finally, most X programs accept a command line option of -display displayname to temporar?

 ily override the contents of DISPLAY. This is most commonly used to pop windows on an?

 other person's screen or as part of a "remote shell" command to start an xterm pointing

 back to your display. For example,

 % xeyes -display joesws:0 -geometry 1000x1000+0+0

 % rsh big xterm -display myws:0 -ls </dev/null &

 X servers listen for connections on a variety of different communications channels (net?

 work byte streams, shared memory, etc.). Since there can be more than one way of contact?

 ing a given server, The hostname part of the display name is used to determine the type of

 channel (also called a transport layer) to be used. X servers generally support the fol?

 lowing types of connections:

 local

 The hostname part of the display name should be the empty string. For example:

 :0, :1, and :0.1. The most efficient local transport will be chosen.

 TCPIP

 The hostname part of the display name should be the server machine's hostname or Page 4/24

 IP address. Full Internet names, abbreviated names, IPv4 addresses, and IPv6 ad?

 dresses are all allowed. For example: x.org:0, expo:0, [::1]:0, 198.112.45.11:0,

 bigmachine:1, and hydra:0.1.

ACCESS CONTROL

 An X server can use several types of access control. Mechanisms provided in Release 7

 are:

 Host Access Simple host-based access control.

 MIT-MAGIC-COOKIE-1 Shared plain-text "cookies".

 XDM-AUTHORIZATION-1 Secure DES based private-keys.

 SUN-DES-1 Based on Sun's secure rpc system.

 Server Interpreted Server-dependent methods of access control

 Xdm initializes access control for the server and also places authorization information in

 a file accessible to the user.

 Normally, the list of hosts from which connections are always accepted should be empty, so

 that only clients with are explicitly authorized can connect to the display. When you add

 entries to the host list (with xhost), the server no longer performs any authorization on

 connections from those machines. Be careful with this.

 The file from which Xlib extracts authorization data can be specified with the environment

 variable XAUTHORITY, and defaults to the file .Xauthority in the home directory. Xdm uses

 $HOME/.Xauthority and will create it or merge in authorization records if it already ex?

 ists when a user logs in.

 If you use several machines and share a common home directory across all of the machines

 by means of a network file system, you never really have to worry about authorization

 files, the system should work correctly by default. Otherwise, as the authorization files

 are machine-independent, you can simply copy the files to share them. To manage autho?

 rization files, use xauth. This program allows you to extract records and insert them

 into other files. Using this, you can send authorization to remote machines when you lo?

 gin, if the remote machine does not share a common home directory with your local machine.

 Note that authorization information transmitted ``in the clear'' through a network file

 system or using ftp or rcp can be ``stolen'' by a network eavesdropper, and as such may

 enable unauthorized access. In many environments, this level of security is not a con?

 cern, but if it is, you need to know the exact semantics of the particular authorization

 data to know if this is actually a problem. Page 5/24

 For more information on access control, see the Xsecurity(7) manual page.

GEOMETRY SPECIFICATIONS

 One of the advantages of using window systems instead of hardwired terminals is that ap?

 plications don't have to be restricted to a particular size or location on the screen.

 Although the layout of windows on a display is controlled by the window manager that the

 user is running (described below), most X programs accept a command line argument of the

 form -geometry WIDTHxHEIGHT+XOFF+YOFF (where WIDTH, HEIGHT, XOFF, and YOFF are numbers)

 for specifying a preferred size and location for this application's main window.

 The WIDTH and HEIGHT parts of the geometry specification are usually measured in either

 pixels or characters, depending on the application. The XOFF and YOFF parts are measured

 in pixels and are used to specify the distance of the window from the left or right and

 top and bottom edges of the screen, respectively. Both types of offsets are measured from

 the indicated edge of the screen to the corresponding edge of the window. The X offset

 may be specified in the following ways:

 +XOFF The left edge of the window is to be placed XOFF pixels in from the left edge of

 the screen (i.e., the X coordinate of the window's origin will be XOFF). XOFF may

 be negative, in which case the window's left edge will be off the screen.

 -XOFF The right edge of the window is to be placed XOFF pixels in from the right edge of

 the screen. XOFF may be negative, in which case the window's right edge will be

 off the screen.

 The Y offset has similar meanings:

 +YOFF The top edge of the window is to be YOFF pixels below the top edge of the screen

 (i.e., the Y coordinate of the window's origin will be YOFF). YOFF may be nega?

 tive, in which case the window's top edge will be off the screen.

 -YOFF The bottom edge of the window is to be YOFF pixels above the bottom edge of the

 screen. YOFF may be negative, in which case the window's bottom edge will be off

 the screen.

 Offsets must be given as pairs; in other words, in order to specify either XOFF or YOFF

 both must be present. Windows can be placed in the four corners of the screen using the

 following specifications:

 +0+0 upper left hand corner.

 -0+0 upper right hand corner.

 -0-0 lower right hand corner. Page 6/24

 +0-0 lower left hand corner.

 In the following examples, a terminal emulator is placed in roughly the center of the

 screen and a load average monitor, mailbox, and clock are placed in the upper right hand

 corner:

 xterm -fn 6x10 -geometry 80x24+30+200 &

 xclock -geometry 48x48-0+0 &

 xload -geometry 48x48-96+0 &

 xbiff -geometry 48x48-48+0 &

WINDOW MANAGERS

 The layout of windows on the screen is controlled by special programs called window man?

 agers. Although many window managers will honor geometry specifications as given, others

 may choose to ignore them (requiring the user to explicitly draw the window's region on

 the screen with the pointer, for example).

 Since window managers are regular (albeit complex) client programs, a variety of different

 user interfaces can be built. The X.Org Foundation distribution comes with a window man?

 ager named twm which supports overlapping windows, popup menus, point-and-click or click-

 to-type input models, title bars, nice icons (and an icon manager for those who don't like

 separate icon windows).

 See the user-contributed software in the X.Org Foundation distribution for other popular

 window managers.

FONT NAMES

 Collections of characters for displaying text and symbols in X are known as fonts. A font

 typically contains images that share a common appearance and look nice together (for exam?

 ple, a single size, boldness, slant, and character set). Similarly, collections of fonts

 that are based on a common type face (the variations are usually called roman, bold,

 italic, bold italic, oblique, and bold oblique) are called families.

 Fonts come in various sizes. The X server supports scalable fonts, meaning it is possible

 to create a font of arbitrary size from a single source for the font. The server supports

 scaling from outline fonts and bitmap fonts. Scaling from outline fonts usually produces

 significantly better results than scaling from bitmap fonts.

 An X server can obtain fonts from individual files stored in directories in the file sys?

 tem, or from one or more font servers, or from a mixtures of directories and font servers.

 The list of places the server looks when trying to find a font is controlled by its font Page 7/24

 path. Although most installations will choose to have the server start up with all of the

 commonly used font directories in the font path, the font path can be changed at any time

 with the xset program. However, it is important to remember that the directory names are

 on the server's machine, not on the application's.

 Bitmap font files are usually created by compiling a textual font description into binary

 form, using bdftopcf. Font databases are created by running the mkfontdir program in the

 directory containing the source or compiled versions of the fonts. Whenever fonts are

 added to a directory, mkfontdir should be rerun so that the server can find the new fonts.

 To make the server reread the font database, reset the font path with the xset program.

 For example, to add a font to a private directory, the following commands could be used:

 % cp newfont.pcf ~/myfonts

 % mkfontdir ~/myfonts

 % xset fp rehash

 The xfontsel and xlsfonts programs can be used to browse through the fonts available on a

 server. Font names tend to be fairly long as they contain all of the information needed

 to uniquely identify individual fonts. However, the X server supports wildcarding of font

 names, so the full specification

 -adobe-courier-medium-r-normal--10-100-75-75-m-60-iso8859-1

 might be abbreviated as:

 -*-courier-medium-r-normal--*-100-*-*-*-*-iso8859-1

 Because the shell also has special meanings for * and ?, wildcarded font names should be

 quoted:

 % xlsfonts -fn '-*-courier-medium-r-normal--*-100-*-*-*-*-*-*'

 The xlsfonts program can be used to list all of the fonts that match a given pattern.

 With no arguments, it lists all available fonts. This will usually list the same font at

 many different sizes. To see just the base scalable font names, try using one of the fol?

 lowing patterns:

 -*-*-*-*-*-*-0-0-0-0-*-0-*-*

 -*-*-*-*-*-*-0-0-75-75-*-0-*-*

 -*-*-*-*-*-*-0-0-100-100-*-0-*-*

 To convert one of the resulting names into a font at a specific size, replace one of the

 first two zeros with a nonzero value. The field containing the first zero is for the

 pixel size; replace it with a specific height in pixels to name a font at that size. Al? Page 8/24

 ternatively, the field containing the second zero is for the point size; replace it with a

 specific size in decipoints (there are 722.7 decipoints to the inch) to name a font at

 that size. The last zero is an average width field, measured in tenths of pixels; some

 servers will anamorphically scale if this value is specified.

FONT SERVER NAMES

 One of the following forms can be used to name a font server that accepts TCP connections:

 tcp/hostname:port

 tcp/hostname:port/cataloguelist

 The hostname specifies the name (or decimal numeric address) of the machine on which the

 font server is running. The port is the decimal TCP port on which the font server is lis?

 tening for connections. The cataloguelist specifies a list of catalogue names, with '+'

 as a separator.

 Examples: tcp/x.org:7100, tcp/198.112.45.11:7100/all.

COLOR NAMES

 Most applications provide ways of tailoring (usually through resources or command line ar?

 guments) the colors of various elements in the text and graphics they display. A color

 can be specified either by an abstract color name, or by a numerical color specification.

 The numerical specification can identify a color in either device-dependent (RGB) or de?

 vice-independent terms. Color strings are case-insensitive.

 X supports the use of abstract color names, for example, "red", "blue". A value for this

 abstract name is obtained by searching one or more color name databases. Xlib first

 searches zero or more client-side databases; the number, location, and content of these

 databases is implementation dependent. If the name is not found, the color is looked up

 in the X server's database. The text form of this database is commonly stored in the file

 usr/share/X11/rgb.txt.

 A numerical color specification consists of a color space name and a set of values in the

 following syntax:

 <color_space_name>:<value>/.../<value>

 An RGB Device specification is identified by the prefix "rgb:" and has the following syn?

 tax:

 rgb:<red>/<green>/<blue>

 <red>, <green>, <blue> := h | hh | hhh | hhhh

 h := single hexadecimal digits Page 9/24

 Note that h indicates the value scaled in 4 bits, hh the value scaled in 8 bits, hhh the

 value scaled in 12 bits, and hhhh the value scaled in 16 bits, respectively. These values

 are passed directly to the X server, and are assumed to be gamma corrected.

 The eight primary colors can be represented as:

 black rgb:0/0/0

 red rgb:ffff/0/0

 green rgb:0/ffff/0

 blue rgb:0/0/ffff

 yellow rgb:ffff/ffff/0

 magenta rgb:ffff/0/ffff

 cyan rgb:0/ffff/ffff

 white rgb:ffff/ffff/ffff

 For backward compatibility, an older syntax for RGB Device is supported, but its continued

 use is not encouraged. The syntax is an initial sharp sign character followed by a nu?

 meric specification, in one of the following formats:

 #RGB (4 bits each)

 #RRGGBB (8 bits each)

 #RRRGGGBBB (12 bits each)

 #RRRRGGGGBBBB (16 bits each)

 The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each are

 specified, they represent the most-significant bits of the value (unlike the "rgb:" syn?

 tax, in which values are scaled). For example, #3a7 is the same as #3000a0007000.

 An RGB intensity specification is identified by the prefix "rgbi:" and has the following

 syntax:

 rgbi:<red>/<green>/<blue>

 The red, green, and blue are floating point values between 0.0 and 1.0, inclusive. They

 represent linear intensity values, with 1.0 indicating full intensity, 0.5 half intensity,

 and so on. These values will be gamma corrected by Xlib before being sent to the X

 server. The input format for these values is an optional sign, a string of numbers possi?

 bly containing a decimal point, and an optional exponent field containing an E or e fol?

 lowed by a possibly signed integer string.

 The standard device-independent string specifications have the following syntax:

 CIEXYZ:<X>/<Y>/<Z> (none, 1, none) Page 10/24

 CIEuvY:<u>/<v>/<Y> (~.6, ~.6, 1)

 CIExyY:<x>/<y>/<Y> (~.75, ~.85, 1)

 CIELab:<L>/<a>/ (100, none, none)

 CIELuv:<L>/<u>/<v> (100, none, none)

 TekHVC:<H>/<V>/<C> (360, 100, 100)

 All of the values (C, H, V, X, Y, Z, a, b, u, v, y, x) are floating point values. Some of

 the values are constrained to be between zero and some upper bound; the upper bounds are

 given in parentheses above. The syntax for these values is an optional '+' or '-' sign, a

 string of digits possibly containing a decimal point, and an optional exponent field con?

 sisting of an 'E' or 'e' followed by an optional '+' or '-' followed by a string of dig?

 its.

 For more information on device independent color, see the Xlib reference manual.

KEYBOARDS

 The X keyboard model is broken into two layers: server-specific codes (called keycodes)

 which represent the physical keys, and server-independent symbols (called keysyms) which

 represent the letters or words that appear on the keys. Two tables are kept in the server

 for converting keycodes to keysyms:

 modifier list

 Some keys (such as Shift, Control, and Caps Lock) are known as modifier and are

 used to select different symbols that are attached to a single key (such as Shift-

 a generates a capital A, and Control-l generates a control character ^L). The

 server keeps a list of keycodes corresponding to the various modifier keys. When?

 ever a key is pressed or released, the server generates an event that contains the

 keycode of the indicated key as well as a mask that specifies which of the modi?

 fier keys are currently pressed. Most servers set up this list to initially con?

 tain the various shift, control, and shift lock keys on the keyboard.

 keymap table

 Applications translate event keycodes and modifier masks into keysyms using a

 keysym table which contains one row for each keycode and one column for various

 modifier states. This table is initialized by the server to correspond to normal

 typewriter conventions. The exact semantics of how the table is interpreted to

 produce keysyms depends on the particular program, libraries, and language input

 method used, but the following conventions for the first four keysyms in each row Page 11/24

 are generally adhered to:

 The first four elements of the list are split into two groups of keysyms. Group 1 con?

 tains the first and second keysyms; Group 2 contains the third and fourth keysyms. Within

 each group, if the first element is alphabetic and the the second element is the special

 keysym NoSymbol, then the group is treated as equivalent to a group in which the first el?

 ement is the lowercase letter and the second element is the uppercase letter.

 Switching between groups is controlled by the keysym named MODE SWITCH, by attaching that

 keysym to some key and attaching that key to any one of the modifiers Mod1 through Mod5.

 This modifier is called the ``group modifier.'' Group 1 is used when the group modifier

 is off, and Group 2 is used when the group modifier is on.

 Within a group, the modifier state determines which keysym to use. The first keysym is

 used when the Shift and Lock modifiers are off. The second keysym is used when the Shift

 modifier is on, when the Lock modifier is on and the second keysym is uppercase alpha?

 betic, or when the Lock modifier is on and is interpreted as ShiftLock. Otherwise, when

 the Lock modifier is on and is interpreted as CapsLock, the state of the Shift modifier is

 applied first to select a keysym; but if that keysym is lowercase alphabetic, then the

 corresponding uppercase keysym is used instead.

OPTIONS

 Most X programs attempt to use the same names for command line options and arguments. All

 applications written with the X Toolkit Intrinsics automatically accept the following op?

 tions:

 -display display

 This option specifies the name of the X server to use.

 -geometry geometry

 This option specifies the initial size and location of the window.

 -bg color, -background color

 Either option specifies the color to use for the window background.

 -bd color, -bordercolor color

 Either option specifies the color to use for the window border.

 -bw number, -borderwidth number

 Either option specifies the width in pixels of the window border.

 -fg color, -foreground color

 Either option specifies the color to use for text or graphics. Page 12/24

 -fn font, -font font

 Either option specifies the font to use for displaying text.

 -iconic

 This option indicates that the user would prefer that the application's windows

 initially not be visible as if the windows had be immediately iconified by the

 user. Window managers may choose not to honor the application's request.

 -name

 This option specifies the name under which resources for the application should be

 found. This option is useful in shell aliases to distinguish between invocations

 of an application, without resorting to creating links to alter the executable

 file name.

 -rv, -reverse

 Either option indicates that the program should simulate reverse video if possi?

 ble, often by swapping the foreground and background colors. Not all programs

 honor this or implement it correctly. It is usually only used on monochrome dis?

 plays.

 +rv

 This option indicates that the program should not simulate reverse video. This is

 used to override any defaults since reverse video doesn't always work properly.

 -selectionTimeout

 This option specifies the timeout in milliseconds within which two communicating

 applications must respond to one another for a selection request.

 -synchronous

 This option indicates that requests to the X server should be sent synchronously,

 instead of asynchronously. Since Xlib normally buffers requests to the server,

 errors do not necessarily get reported immediately after they occur. This option

 turns off the buffering so that the application can be debugged. It should never

 be used with a working program.

 -title string

 This option specifies the title to be used for this window. This information is

 sometimes used by a window manager to provide some sort of header identifying the

 window.

 -xnllanguage language[_territory][.codeset] Page 13/24

 This option specifies the language, territory, and codeset for use in resolving

 resource and other filenames.

 -xrm resourcestring

 This option specifies a resource name and value to override any defaults. It is

 also very useful for setting resources that don't have explicit command line argu?

 ments.

RESOURCES

 To make the tailoring of applications to personal preferences easier, X provides a mecha?

 nism for storing default values for program resources (e.g. background color, window ti?

 tle, etc.) that is used by programs that use toolkits based on the X Toolkit Intrinsics

 library libXt. (Programs using the common Gtk+ and Qt toolkits use other configuration

 mechanisms.) Resources are specified as strings that are read in from various places when

 an application is run. Program components are named in a hierarchical fashion, with each

 node in the hierarchy identified by a class and an instance name. At the top level is the

 class and instance name of the application itself. By convention, the class name of the

 application is the same as the program name, but with the first letter capitalized (e.g.

 Bitmap or Emacs) although some programs that begin with the letter ``x'' also capitalize

 the second letter for historical reasons.

 The precise syntax for resources is:

 ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>

 Comment = "!" {<any character except null or newline>}

 IncludeFile = "#" WhiteSpace "include" WhiteSpace FileName WhiteSpace

 FileName = <valid filename for operating system>

 ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Value

 ResourceName = [Binding] {Component Binding} ComponentName

 Binding = "." | "*"

 WhiteSpace = {<space> | <horizontal tab>}

 Component = "?" | ComponentName

 ComponentName = NameChar {NameChar}

 NameChar = "a"-"z" | "A"-"Z" | "0"-"9" | "_" | "-"

 Value = {<any character except null or unescaped newline>}

 Elements separated by vertical bar (|) are alternatives. Curly braces ({...}) indicate

 zero or more repetitions of the enclosed elements. Square brackets ([...]) indicate that Page 14/24

 the enclosed element is optional. Quotes ("...") are used around literal characters.

 IncludeFile lines are interpreted by replacing the line with the contents of the specified

 file. The word "include" must be in lowercase. The filename is interpreted relative to

 the directory of the file in which the line occurs (for example, if the filename contains

 no directory or contains a relative directory specification).

 If a ResourceName contains a contiguous sequence of two or more Binding characters, the

 sequence will be replaced with single "." character if the sequence contains only "."

 characters, otherwise the sequence will be replaced with a single "*" character.

 A resource database never contains more than one entry for a given ResourceName. If a re?

 source file contains multiple lines with the same ResourceName, the last line in the file

 is used.

 Any whitespace character before or after the name or colon in a ResourceSpec are ignored.

 To allow a Value to begin with whitespace, the two-character sequence ``\space'' (back?

 slash followed by space) is recognized and replaced by a space character, and the two-

 character sequence ``\tab'' (backslash followed by horizontal tab) is recognized and re?

 placed by a horizontal tab character. To allow a Value to contain embedded newline char?

 acters, the two-character sequence ``\n'' is recognized and replaced by a newline charac?

 ter. To allow a Value to be broken across multiple lines in a text file, the two-charac?

 ter sequence ``\newline'' (backslash followed by newline) is recognized and removed from

 the value. To allow a Value to contain arbitrary character codes, the four-character se?

 quence ``\nnn'', where each n is a digit character in the range of ``0''-``7'', is recog?

 nized and replaced with a single byte that contains the octal value specified by the se?

 quence. Finally, the two-character sequence ``\\'' is recognized and replaced with a sin?

 gle backslash.

 When an application looks for the value of a resource, it specifies a complete path in the

 hierarchy, with both class and instance names. However, resource values are usually given

 with only partially specified names and classes, using pattern matching constructs. An

 asterisk (*) is a loose binding and is used to represent any number of intervening compo?

 nents, including none. A period (.) is a tight binding and is used to separate immedi?

 ately adjacent components. A question mark (?) is used to match any single component name

 or class. A database entry cannot end in a loose binding; the final component (which can?

 not be "?") must be specified. The lookup algorithm searches the resource database for

 the entry that most closely matches (is most specific for) the full name and class being Page 15/24

 queried. When more than one database entry matches the full name and class, precedence

 rules are used to select just one.

 The full name and class are scanned from left to right (from highest level in the hierar?

 chy to lowest), one component at a time. At each level, the corresponding component

 and/or binding of each matching entry is determined, and these matching components and

 bindings are compared according to precedence rules. Each of the rules is applied at each

 level, before moving to the next level, until a rule selects a single entry over all oth?

 ers. The rules (in order of precedence) are:

 1. An entry that contains a matching component (whether name, class, or "?") takes

 precedence over entries that elide the level (that is, entries that match the level

 in a loose binding).

 2. An entry with a matching name takes precedence over both entries with a matching

 class and entries that match using "?". An entry with a matching class takes prece?

 dence over entries that match using "?".

 3. An entry preceded by a tight binding takes precedence over entries preceded by a

 loose binding.

 Programs based on the X Toolkit Intrinsics obtain resources from the following sources

 (other programs usually support some subset of these sources):

 RESOURCE_MANAGER root window property

 Any global resources that should be available to clients on all machines should be

 stored in the RESOURCE_MANAGER property on the root window of the first screen us?

 ing the xrdb program. This is frequently taken care of when the user starts up X

 through the display manager or xinit.

 SCREEN_RESOURCES root window property

 Any resources specific to a given screen (e.g. colors) that should be available to

 clients on all machines should be stored in the SCREEN_RESOURCES property on the

 root window of that screen. The xrdb program will sort resources automatically

 and place them in RESOURCE_MANAGER or SCREEN_RESOURCES, as appropriate.

 application-specific files

 Directories named by the environment variable XUSERFILESEARCHPATH or the environ?

 ment variable XAPPLRESDIR (which names a single directory and should end with a

 '/' on POSIX systems), plus directories in a standard place (usually under

 /usr/share/X11/, but this can be overridden with the XFILESEARCHPATH environment Page 16/24

 variable) are searched for for application-specific resources. For example, ap?

 plication default resources are usually kept in /usr/share/X11/app-defaults/. See

 the X Toolkit Intrinsics - C Language Interface manual for details.

 XENVIRONMENT

 Any user- and machine-specific resources may be specified by setting the XENVIRON?

 MENT environment variable to the name of a resource file to be loaded by all ap?

 plications. If this variable is not defined, a file named $HOME/.Xdefaults-host?

 name is looked for instead, where hostname is the name of the host where the ap?

 plication is executing.

 -xrm resourcestring

 Resources can also be specified from the command line. The resourcestring is a

 single resource name and value as shown above. Note that if the string contains

 characters interpreted by the shell (e.g., asterisk), they must be quoted. Any

 number of -xrm arguments may be given on the command line.

 Program resources are organized into groups called classes, so that collections of indi?

 vidual resources (each of which are called instances) can be set all at once. By conven?

 tion, the instance name of a resource begins with a lowercase letter and class name with

 an upper case letter. Multiple word resources are concatenated with the first letter of

 the succeeding words capitalized. Applications written with the X Toolkit Intrinsics will

 have at least the following resources:

 background (class Background)

 This resource specifies the color to use for the window background.

 borderWidth (class BorderWidth)

 This resource specifies the width in pixels of the window border.

 borderColor (class BorderColor)

 This resource specifies the color to use for the window border.

 Most applications using the X Toolkit Intrinsics also have the resource foreground (class

 Foreground), specifying the color to use for text and graphics within the window.

 By combining class and instance specifications, application preferences can be set quickly

 and easily. Users of color displays will frequently want to set Background and Foreground

 classes to particular defaults. Specific color instances such as text cursors can then be

 overridden without having to define all of the related resources. For example,

 bitmap*Dashed: off Page 17/24

 XTerm*cursorColor: gold

 XTerm*multiScroll: on

 XTerm*jumpScroll: on

 XTerm*reverseWrap: on

 XTerm*curses: on

 XTerm*Font: 6x10

 XTerm*scrollBar: on

 XTerm*scrollbar*thickness: 5

 XTerm*multiClickTime: 500

 XTerm*charClass: 33:48,37:48,45-47:48,64:48

 XTerm*cutNewline: off

 XTerm*cutToBeginningOfLine: off

 XTerm*titeInhibit: on

 XTerm*ttyModes: intr ^c erase ^? kill ^u

 XLoad*Background: gold

 XLoad*Foreground: red

 XLoad*highlight: black

 XLoad*borderWidth: 0

 emacs*Geometry: 80x65-0-0

 emacs*Background: rgb:5b/76/86

 emacs*Foreground: white

 emacs*Cursor: white

 emacs*BorderColor: white

 emacs*Font: 6x10

 xmag*geometry: -0-0

 xmag*borderColor: white

 If these resources were stored in a file called .Xresources in your home directory, they

 could be added to any existing resources in the server with the following command:

 % xrdb -merge $HOME/.Xresources

 This is frequently how user-friendly startup scripts merge user-specific defaults into any

 site-wide defaults. All sites are encouraged to set up convenient ways of automatically

 loading resources. See the Xlib manual section Resource Manager Functions for more infor?

 mation. Page 18/24

ENVIRONMENT

 DISPLAY

 This is the only mandatory environment variable. It must point to an X server. See

 section "Display Names" above.

 XAUTHORITY

 This must point to a file that contains authorization data. The default is

 $HOME/.Xauthority. See Xsecurity(7), xauth(1), xdm(1), Xau(3).

 ICEAUTHORITY

 This must point to a file that contains authorization data. The default is

 $HOME/.ICEauthority.

 LC_ALL, LC_CTYPE, LANG

 The first non-empty value among these three determines the current locale's facet

 for character handling, and in particular the default text encoding. See locale(7),

 setlocale(3), locale(1).

 XMODIFIERS

 This variable can be set to contain additional information important for the cur?

 rent locale setting. Typically set to @im=<input-method> to enable a particular in?

 put method. See XSetLocaleModifiers(3).

 XLOCALEDIR

 This must point to a directory containing the locale.alias file and Compose and

 XLC_LOCALE file hierarchies for all locales. The default value is

 /usr/share/X11/locale.

 XENVIRONMENT

 This must point to a file containing X resources. The default is $HOME/.Xde?

 faults-<hostname>. Unlike $HOME/.Xresources, it is consulted each time an X appli?

 cation starts.

 XFILESEARCHPATH

 This must contain a colon separated list of path templates, where libXt will search

 for resource files. The default value consists of

 /etc/X11/%L/%T/%N%C%S:\

 /etc/X11/%l/%T/%N%C%S:\

 /etc/X11/%T/%N%C%S:\

 /etc/X11/%L/%T/%N%S:\ Page 19/24

 /etc/X11/%l/%T/%N%S:\

 /etc/X11/%T/%N%S:\

 /usr/share/X11/%L/%T/%N%C%S:\

 /usr/share/X11/%l/%T/%N%C%S:\

 /usr/share/X11/%T/%N%C%S:\

 /usr/share/X11/%L/%T/%N%S:\

 /usr/share/X11/%l/%T/%N%S:\

 /usr/share/X11/%T/%N%S:\

 /usr/lib/x86_64-linux-gnu/X11/%L/%T/%N%C%S:\

 /usr/lib/x86_64-linux-gnu/X11/%l/%T/%N%C%S:\

 /usr/lib/x86_64-linux-gnu/X11/%T/%N%C%S:\

 /usr/lib/x86_64-linux-gnu/X11/%L/%T/%N%S:\

 /usr/lib/x86_64-linux-gnu/X11/%l/%T/%N%S:\

 /usr/lib/x86_64-linux-gnu/X11/%T/%N%S

 A path template is transformed to a pathname by substituting:

 %D => the implementation-specific default path

 %N => name (basename) being searched for

 %T => type (dirname) being searched for

 %S => suffix being searched for

 %C => value of the resource "customization"

 (class "Customization")

 %L => the locale name

 %l => the locale's language (part before '_')

 %t => the locale's territory (part after '_` but before '.')

 %c => the locale's encoding (part after '.')

 XUSERFILESEARCHPATH

 This must contain a colon separated list of path templates, where libXt will search

 for user dependent resource files. The default value is:

 $XAPPLRESDIR/%L/%N%C:\

 $XAPPLRESDIR/%l/%N%C:\

 $XAPPLRESDIR/%N%C:\

 $HOME/%N%C:\

 $XAPPLRESDIR/%L/%N:\ Page 20/24

 $XAPPLRESDIR/%l/%N:\

 $XAPPLRESDIR/%N:\

 $HOME/%N

 $XAPPLRESDIR defaults to $HOME, see below.

 A path template is transformed to a pathname by substituting:

 %D => the implementation-specific default path

 %N => name (basename) being searched for

 %T => type (dirname) being searched for

 %S => suffix being searched for

 %C => value of the resource "customization"

 (class "Customization")

 %L => the locale name

 %l => the locale's language (part before '_')

 %t => the locale's territory (part after '_` but before '.')

 %c => the locale's encoding (part after '.')

 XAPPLRESDIR

 This must point to a base directory where the user stores the application dependent

 resource files. The default value is $HOME. Only used if XUSERFILESEARCHPATH is not

 set.

 XKEYSYMDB

 This must point to a file containing nonstandard keysym definitions. The default

 value is /usr/share/X11/XKeysymDB.

 XCMSDB This must point to a color name database file. The default value is

 /usr/lib/x86_64-linux-gnu/X11/Xcms.txt.

 RESOURCE_NAME

 This serves as main identifier for resources belonging to the program being exe?

 cuted. It defaults to the basename of pathname of the program.

 SESSION_MANAGER

 Denotes the session manager to which the application should connect. See xsm(1),

 rstart(1).

 XF86BIGFONT_DISABLE

 Setting this variable to a non-empty value disables the XFree86-Bigfont extension.

 This extension is a mechanism to reduce the memory consumption of big fonts by use Page 21/24

 of shared memory.

 XKB_FORCE

 XKB_DISABLE

 XKB_DEBUG

 _XKB_CHARSET

 _XKB_LOCALE_CHARSETS

 _XKB_OPTIONS_ENABLE

 _XKB_LATIN1_LOOKUP

 _XKB_CONSUME_LOOKUP_MODS

 _XKB_CONSUME_SHIFT_AND_LOCK

 _XKB_IGNORE_NEW_KEYBOARDS

 _XKB_CONTROL_FALLBACK

 _XKB_COMP_LED _XKB_COMP_FAIL_BEEP

 These variables influence the X Keyboard Extension.

EXAMPLES

 The following is a collection of sample command lines for some of the more frequently used

 commands. For more information on a particular command, please refer to that command's

 manual page.

 % xrdb $HOME/.Xresources

 % xmodmap -e "keysym BackSpace = Delete"

 % mkfontdir /usr/local/lib/X11/otherfonts

 % xset fp+ /usr/local/lib/X11/otherfonts

 % xmodmap $HOME/.keymap.km

 % xsetroot -solid 'rgbi:.8/.8/.8'

 % xset b 100 400 c 50 s 1800 r on

 % xset q

 % twm

 % xmag

 % xclock -geometry 48x48-0+0 -bg blue -fg white

 % xeyes -geometry 48x48-48+0

 % xbiff -update 20

 % xlsfonts '*helvetica*'

 % xwininfo -root Page 22/24

 % xdpyinfo -display joesworkstation:0

 % xhost -joesworkstation

 % xrefresh

 % xwd | xwud

 % bitmap companylogo.bm 32x32

 % xcalc -bg blue -fg magenta

 % xterm -geometry 80x66-0-0 -name myxterm $*

DIAGNOSTICS

 A wide variety of error messages are generated from various programs. The default error

 handler in Xlib (also used by many toolkits) uses standard resources to construct diagnos?

 tic messages when errors occur. The defaults for these messages are usually stored in

 usr/share/X11/XErrorDB. If this file is not present, error messages will be rather terse

 and cryptic.

 When the X Toolkit Intrinsics encounter errors converting resource strings to the appro?

 priate internal format, no error messages are usually printed. This is convenient when it

 is desirable to have one set of resources across a variety of displays (e.g. color vs.

 monochrome, lots of fonts vs. very few, etc.), although it can pose problems for trying to

 determine why an application might be failing. This behavior can be overridden by the

 setting the StringConversionWarnings resource.

 To force the X Toolkit Intrinsics to always print string conversion error messages, the

 following resource should be placed in the file that gets loaded onto the RESOURCE_MANAGER

 property using the xrdb program (frequently called .Xresources or .Xres in the user's home

 directory):

 *StringConversionWarnings: on

 To have conversion messages printed for just a particular application, the appropriate in?

 stance name can be placed before the asterisk:

 xterm*StringConversionWarnings: on

SEE ALSO

 XOrgFoundation(7), XStandards(7), Xsecurity(7), appres(1), bdftopcf(1), bitmap(1), ed?

 itres(1), fsinfo(1), fslsfonts(1), fstobdf(1), iceauth(1), imake(1), makedepend(1), mk?

 fontdir(1), oclock(1), proxymngr(1), rgb(1), resize(1), rstart(1), smproxy(1), twm(1),

 x11perf(1), x11perfcomp(1), xauth(1), xclipboard(1), xclock(1), xcmsdb(1), xconsole(1),

 xdm(1), xdpyinfo(1), xfd(1), xfindproxy(1), xfs(1), xfwp(1), xhost(1), xinit(1), Page 23/24

 xkbbell(1), xkbcomp(1), xkbevd(1), xkbprint(1), xkbvleds(1), xkbwatch(1), xkill(1), xl?

 ogo(1), xlsatoms(1), xlsclients(1), xlsfonts(1), xmag(1), xmh(1), xmodmap(1), xprop(1),

 xrdb(1), xrefresh(1), xrx(1), xset(1), xsetroot(1), xsm(1), xstdcmap(1), xterm(1), xwd(1),

 xwininfo(1), xwud(1). Xserver(1), Xorg(1), Xdmx(1), Xephyr(1), Xnest(1), Xquartz(1),

 Xvfb(1), Xvnc(1), XWin(1). Xlib - C Language X Interface, and X Toolkit Intrinsics - C

 Language Interface

TRADEMARKS

 X Window System is a trademark of The Open Group.

AUTHORS

 A cast of thousands, literally. Releases 6.7 and later are brought to you by the X.Org

 Foundation. The names of all people who made it a reality will be found in the individual

 documents and source files.

 Releases 6.6 and 6.5 were done by The X.Org Group. Release 6.4 was done by The X Project

 Team. The Release 6.3 distribution was from The X Consortium, Inc. The staff members at

 the X Consortium responsible for that release were: Donna Converse (emeritus), Stephen

 Gildea (emeritus), Kaleb Keithley, Matt Landau (emeritus), Ralph Mor (emeritus), Janet

 O'Halloran, Bob Scheifler, Ralph Swick, Dave Wiggins (emeritus), and Reed Augliere.

 The X Window System standard was originally developed at the Laboratory for Computer Sci?

 ence at the Massachusetts Institute of Technology, and all rights thereto were assigned to

 the X Consortium on January 1, 1994. X Consortium, Inc. closed its doors on December 31,

 1996. All rights to the X Window System have been assigned to The Open Group.

X Version 11 xorg-docs 1.7.1 X(7)

Page 24/24

