
Linux Ubuntu 22.4.5 Manual Pages on command 'Test::StagedFileProducer.3'

$ man Test::StagedFileProducer.3

Test::StagedFileProducer(3) Debian Package Checker Test::StagedFileProducer(3)

NAME

 Test::StagedFileProducer -- mtime-based file production engine

SYNOPSIS

 use Test::StagedFileProducer;

 my $wherever = '/your/test/directory';

 my $producer = Test::StagedFileProducer->new(path => $wherever);

 $producer->exclude("$wherever/log", "$wherever/build-stamp");

 my $output = "$wherever/file.out";

 $producer->add_stage(

 products => [$output],

 build =>sub {

 printf "Building $output.\n";

 },

 skip =>sub {

 printf "Skipping $output.\n";

 }

);

 $producer->run(minimum_epoch => time, verbose => 1);

DESCRIPTION

 Provides a way to define and stack file production stages that all depend on

 subsets of the same group of files.
Page 1/3

 After the stages are defined, the processing engine takes an inventory of all files

 in a target directory. It excludes some files, like logs, that should not be

 considered.

 Each stage adds its own products to the list of files to be excluded before

 deciding whether to produce them. The decision is based on relative file

 modification times, in addition to a systemic rebuilding threshold. Before

 rebuilding, each stage asks a lower stage to make the same determination.

 The result is an engine with file production stages that depend on successively

 larger sets of files.

FUNCTIONS

 new(path => PATH)

 Create a new instance focused on files in directory PATH.

 exclude(LIST)

 Excludes all absolute paths in LIST from all mtime comparisons. This is

 especially useful for logs. Calls to Path::Tiny->realpath are made to ensure

 the elements are canonical and have a chance of matching something returned by

 File::Find::Rule.

 add_stage(HASH)

 Add a stage defined by HASH to the processing engine for processing after

 stages previously added. HASH can define the following keys:

 $HASH{products} => LIST; a list of full-path filenames to be produced.

 $HASH{minimum_epoch} => EPOCH; an integer threshold for maximum age

 $HASH{build} => SUB; a sub executed when production is required.

 $HASH{skip} => SUB; a sub executed when production is not required.

 run(PARAMETERS)

 Runs the defined engine using the given parameters, which are arranged in a

 matching list suitable for assignment to a hash. The following two parameters

 are currently available:

 minimum_epoch => EPOCH; a systemic threshold, in epochs, below which rebuilding

 is mandatory for any product.

 verbose => BOOLEAN; an option to enable more verbose reporting

 _process_remaining_stages(LIST)

 An internal subroutine that is used recursively to execute the stages. The list Page 2/3

 passed describes the list of files to be excluded from subsequent mtime

 calculations.

 Please note that the bulk of the execution takes place after calling the next

 lower stage. That is to ensure that any lower build targets (or products, in

 our parlance) are met before the present stage attempts to do its job.

Lintian v2.62.0ubuntu2.2 2022-11-09 Test::StagedFileProducer(3)

Page 3/3

