
Linux Ubuntu 22.4.5 Manual Pages on command 'Lintian::Tutorial::WritingTests.3'

$ man Lintian::Tutorial::WritingTests.3

Lintian::Tutorial::WritingTests(3)Debian Package CheckerLintian::Tutorial::WritingTests(3)

NAME

 Lintian::Tutorial::WritingTests -- Short tutorial on writing tests

SYNOPSIS

 Warning: This document may be out of date.

 This document attempts to be a short / quick tutorial to the Lintian test suite

 from a test-writer's perspective. As such, it will only cover the standard type of

 tests (from the "tests" suite).

 The guide will involve writing a test for the "deb/pkg-check" check, which was

 documented in the Lintian::Tutorial::WritingChecks tutorial.

 For running tests, please see Lintian::Tutorial::TestSuite instead.

DESCRIPTION

 The Lintian test suite is divided into several parts. These are:

 - scripts

 Small (Perl) "prove" tests. These assert that code style, data files and/or

 self-contained code units (i.e. unit tests) work as intended. They are not

 used for testing Lintian tags.

 - tags

 These tests all test for the presence of tags after building test packages

 using skeletons. For most cases, we recommend

 Skeleton: upload-non-native

 suites are small test suites that test some particular tags for .changes, .deb
Page 1/9

 or .dsc files. Typically, you will find the more exotic tags here, which

 require some special fiddling and cannot be built by a "standard" dh7 + dpkg

 build.

 - literal

 These tests look to match the literal output of Lintian. These tests are useful

 as general false positives. They also catch Lintian messages unrelated to tags.

 With this in mind, let us move on to the scope.

 Scope of the tutorial

 WARNING: THE REMAINDER OF THIS TUTORIAL IS OUT OF DATE.

 The "tests" suite alone is fairly complex on its own. To keep things simple, the

 tutorial will limit itself to creating a "native" package with no special

 requirements in the "tests" suite.

 In particular, note that the tags must not be pedantic for this to work. If you

 followed the check writing tutorial and made the tags pedantic, please change them

 into "I", "W" or "E" tags.

 Once the basics are covered, you should be better equipped to deal with the other

 ("tag testing") suites or using other features of the "tests" suite (e.g. pedantic

 tags).

 The design of the Lintian test suite

 The basic design of the Lintian test suite can be summed up as less is more. The

 Debian build system is changing all the time (albeit, slowly) and sometimes it

 deprecates or breaks existing features.

 With over 400 tests all featuring the same basic parts, the test suite features

 several tricks to keep up with the pace. It uses "skeletons" (template)

 directories to seed the package structures and template files to fill in the basic

 files (e.g. "debian/control" and "debian/changelog").

 This means that when a new standards-version comes along, debhelper deprecates a

 feature or (more likely) Lintian adds a new tag, the majority of the tests can

 quickly be adapted with only a minor effort.

 Since pedantic tags tend to require additional effort to avoid, most Lintian tests

 do not run with pedantic tags enabled.

 The basics of a "native" package in the "tests" suite

 For starters, you need 2 files and 1 directory, which will be placed in Page 2/9

 t/tests/<test-name>.

 The desc file (mandatory)

 This is the test description file. It is a deb822 file (i.e. same syntax as

 debian/control), which contains a number of fields.

 Let's start with the following template:

 Testname: pkg-deb-check-general

 Version: 1.0

 Description: General test of the pkg/deb-check check

 Test-For:

 missing-multi-arch-field

 missing-pre-depends-on-multiarch-support

 This defines the name of the test, its sequence number (i.e. how early it should be

 run), the version of the generated package, a description and the tags you intend

 to test for.

 In case you were wondering why "invalid-multi-arch-field" is not listed, then it is

 because dpkg will not allow us to use an invalid Multi-Arch value. Therefore, that

 particular tag would have to be tested in the "debs" suite instead.

 Note that the value of the Testname field (as Source field), Version field and

 Description field (as the synopsis) will be used in the package. As such, they

 must obey the normal requirements for these purposes.

 Please keep the following conventions in mind:

 - The Testname should be "<check-name>-<test-name>"

 Note that regular Lintian checks do not have a "/", so the naming convention

 works slightly better there.

 - The Version should always be "1.0" unless the test requires anything else.

 For non-native packages, the default would be "1.0-1".

 The "tags" file (mandatory, but may be empty)

 This file contains the sorted "expected" output of lintian. Assuming all of the

 tags are "I" tags, the file should look something like:

 I: pkg-deb-check-general-missing-ma: missing-multi-arch-field

 I: pkg-deb-check-general-missing-pred: missing-pre-depends-on-multiarch-support

 The "debian/" directory (optional, but usually needed)

 The unpacked debian package in its full glory. Note that this means that the Page 3/9

 (e.g.) debian/rules file would be t/tests/<test-name>/debian/debian/rules (note

 the double "debian/").

 The directory is seeded from t/templates/tests/<skeleton>/, where skeleton is the

 value of the "Skeleton" field from the "desc" file.

 For this test, you only need a specialized control file. This file could look

 something like:

 Source: {$source}

 Priority: extra

 Section: {$section}

 Maintainer: {$author}

 Standards-Version: {$standards_version}

 Build-Depends: {$build_depends}

 Package: {$source}-missing-ma

 Architecture: {$architecture}

 Depends: $\{shlibs:Depends\}, $\{misc:Depends\}

 Description: {$description} (invalid)

 This is a test package designed to exercise some feature or tag of

 Lintian. It is part of the Lintian test suite and may do very odd

 things. It should not be installed like a regular package. It may

 be an empty package.

 .

 Missing M-A field.

 Package: {$source}-missing-pred

 Architecture: any

 Depends: $\{shlibs:Depends\}, $\{misc:Depends\}

 Multi-arch: same

 Description: {$description} (pre-depends)

 This is a test package designed to exercise some feature or tag of

 Lintian. It is part of the Lintian test suite and may do very odd

 things. It should not be installed like a regular package. It may

 be an empty package.

 .

 Missing Pre-Depends. Page 4/9

 Running the test

 At this point, the test is in fact ready to be executed. It can be run by using:

 $ debian/rules runtests onlyrun=pkg-deb-check-general

 OR

 $ t/bin/runtests --dump-logs t debian/test-out pkg-deb-check-general

 However, it will not emit the correct tags unless pkg/deb-check is part of the

 debian/main lintian profile. If your check is a part of a different profile, add

 the "Profile: <name>" field to the "desc" file.

 With this, the tutorial is over. Below you will find some more resources that may

 be useful to your future test writing work.

REFERENCES / APPENDIX

 A step-by-step guide of how a test case works

 Basically, the tag-testing test cases all involve building a package and running

 lintian on the result. The "tests" suite does a full build with dpkg-buildpackage,

 the other suites "hand-craft" only the type of artifacts they are named after (e.g.

 "source" produces only source packages).

 A test in the "tests" suite

 The basic process of a lintian test in the "tests" suite.

 1. Copy the "upstream" skeleton dir into the build dir (non-native only)

 2. Copy the "upstream" dir from the test into the build dir (if present, non-

 native only)

 3. Run the "pre_upstream" hook (if present, non-native only)

 4. Assemble the upstream tarball (non-native only)

 5. Copy the "debian" skeleton dir into the build dir

 6. Copy the "debian" directory from the test into the build dir (if present)

 7. Create debian/control and debian/changelog from "<file>.in" if they do not

 exist.

 8. Create an empty watch file (if missing, non-native only)

 9. Run the "pre_build" hook (if present)

 10. Run dpkg-buildpackage

 11. Run lintian on the build result

 12. Run the "post_test" hook (if present)

 13. Run the "test_calibration" hook (if present), which may produce a new "expected Page 5/9

 output file".

 14. Compare the result with the expected output.

 Note that the majority of the steps are conditional on native/non-native packages

 or presence of hooks.

 A test in the "debs" and the "source" suite

 The "debs" and the "source" suite share the same basic steps, which are:

 1. Copy the skeleton dir into the build dir

 2. Copy the test directory files into the build dir

 3. Create changelog, control, and (debs-only) Makefile from "<file>.in" if they do

 not exist.

 4. Run make in the build dir

 5. Run lintian on the produced artifact (there must be exactly one)

 6. Compare the result with the expected output.

 A test in the "changes" suite

 The changes test is fairly simple as there is not much building. The steps are as

 the following:

 1. Find or compute the test artifact as the following:

 - If <test-dir>/<test-name>.changes exists, it is used as the artifact.

 - Otherwise, copy <test-dir>/<test-name>.changes.in into the build dir and

 use it as a template to create <build-dir>/<test-name>.changes. The result

 is then used as the artifact to test.

 2. Run lintian run on the artifact

 3. Compare the result with the expected output

 The full layout of a test in the "tests" suite

 Each test in the "tests" suite is placed in t/tests/<check>-<name>. In these you

 will find some of the following files:

 - desc (mandatory)

 This is the test description file. It is a deb822 file (i.e. same syntax as

 debian/control), which contains a number of fields.

 - tags (mandatory, but may be empty)

 This file contains the "expected" output of lintian.

 This is generally sorted, though a few tests rely on the order of the output.

 This can be controlled via the "Sort" field in the "desc" file. Page 6/9

 - debian/ (optional, but usually what you need)

 The unpacked debian package. For "native" package tests, this is also the

 "upstream" part. For "non-native" package tests, this can be used to override

 files in the "upstream" part (rarely needed).

 The actual packaging files (e.g. debian/rules) would be in

 I<< t/tests/<test-name>/debian/debian/rules >>

 Note the double "debian".

 This part is seeded from t/templates/tests/<skeleton>/, where skeleton is the

 value of the "Skeleton" field from the "desc" file.

 - upstream/ (optional, rarely needed)

 This directory is the used to create the "upstream" tarball for "non-native"

 package tests. Since most tags are emitted for both "native" and "non-native"

 tests, it is simpler (and slightly faster) to use "native" packages for most

 tests.

 The files here should also be present with the same contents in the debian

 directory unless you're intentionally creating a diff. However, as normal with

 a Debian package, you can omit files entirely from the debian directory and the

 deletions will be ignored by dpkg-buildpackage.

 The directory will be seeded from t/templates/tests/<skeleton>.upstream/, where

 skeleton is the value of the "Skeleton" field from the "desc" file.

 - post_test (optional, rarely needed)

 This script (if present) is a sed script that can be used to "massage" the

 output of lintian before comparing it with the "expected output".

 The most common use for this script is to remove the architecture name, multi-

 arch path, drop hardening tags or exact standards-version number from tags

 output. Here are some examples files used:

 # Remove the exact standards version, so the tags file will not need

 # to be updated with every new standards-version

 s/\(current is ([0-9]+\.)+[0-9]\)/(current is CURRENT)/

 # Drop all hardening tags (they can differ between architectures)

 /: hardening-.*/ d

 # Massage e.g. usr/lib/i386-linux-gnu/pkgconfig into a generic path

 s, usr/lib/[^/]+/pkgconfig/, usr/lib/ARCH/pkgconfig/, Page 7/9

 It may be useful for other cases where the output of Lintian may change on

 different systems.

 - pre_build / pre_upstream (optional, special case usage)

 If present and executable, these scripts can be used to mess with the package

 directory and (what will become) the upstream tarball.

 Their common use case is to create files in the tarballs that cannot (or

 preferably should not) be included in the revision control system. Common

 cases include "binary", "minimized" files or files with "weird" names such as

 backslashes or non UTF-8 characters.

 Both scripts receive a directory as first argument, which is the directory they

 should work on. For:

 - pre_upstream

 The script will be run before the upstream tarball is compiled. The first

 argument is the directory that will be included in the upstream tarball.

 - pre_build

 The script will be run before dpkg-buildpackage is invoked. The first

 argument is the directory of the unpacked debian source package.

 - test_calibration (optional, special case usage)

 If present and executable, this script will be invoked after lintian and

 post_test (if present) have been run. The script can then modify the expected

 output and the actual output.

 This is useful for those extremely rare cases where post_test is insufficient

 to handle the requirements. So far, this has only been needed for the

 hardening checks, where the output differs between architectures.

 The script will be passed 3 arguments:

 - Path to the "expected output" file (read-only)

 This is the "tags" file from the test suite and must not be modified.

 - Path to the "actual output" file (read-write)

 This is the file as lintian and post_test created it.

 - Path to the "calibrated expected output" (create+write)

 This file does not exist and should be created by the script, if it wishes

 to change the "expected output". If this file exists when the script

 terminates, this file will be used instead of the original "expected Page 8/9

 output" file.

SEE ALSO

 The READMEs in the suites: t/tests/README, t/changes/README, t/debs/README and

 t/source/README.

 Lintian::Tutorial::WritingChecks, Lintian::Tutorial::TestSuite

Lintian v2.62.0ubuntu2.2 2022-11-09 Lintian::Tutorial::WritingTests(3)

Page 9/9

