
Linux Ubuntu 22.4.5 Manual Pages on command 'Lintian::Relation.3'

$ man Lintian::Relation.3

Lintian::Relation(3) Debian Package Checker Lintian::Relation(3)

NAME

 Lintian::Relation - Lintian operations on dependencies and relationships

SYNOPSIS

 my $depends = Lintian::Relation->new('foo | bar, baz');

 print "yes\n" if $depends->implies('baz');

 print "no\n" if $depends->implies('foo');

DESCRIPTION

 This module provides functions for parsing and evaluating package relationship

 fields such as Depends and Recommends for binary packages and Build-Depends for

 source packages. It parses a relationship into an internal format and can then

 answer questions such as "does this dependency require that a given package be

 installed" or "is this relationship a superset of another relationship."

 A dependency line is viewed as a predicate formula. The comma separator means

 "and", and the alternatives separator means "or". A bare package name is the

 predicate "a package of this name is available". A package name with a version

 clause is the predicate "a package of this name that satisfies this version clause

 is available." Architecture restrictions, as specified in Policy for build

 dependencies, are supported and also checked in the implication logic unless the

 new_noarch() constructor is used. With that constructor, architecture restrictions

 are ignored.

CLASS METHODS
Page 1/6

 new(RELATION)

 Creates a new Lintian::Relation object corresponding to the parsed relationship

 RELATION. This object can then be used to ask questions about that

 relationship. RELATION may be "undef" or the empty string, in which case the

 returned Lintian::Relation object is empty (always satisfied).

 parse_element

 new_norestriction(RELATION)

 Creates a new Lintian::Relation object corresponding to the parsed relationship

 RELATION, ignoring architecture restrictions and restriction lists. This should

 be used in cases where we only care if a dependency is present in some cases

 and we don't want to require that the architectures match (such as when

 checking for proper build dependencies, since if there are architecture

 constraints the maintainer is doing something beyond Lintian's ability to

 analyze) or that the restrictions list match (Lintian can't handle dependency

 implications with build profiles yet). RELATION may be "undef" or the empty

 string, in which case the returned Lintian::Relation object is empty (always

 satisfied).

 new_noarch(RELATION)

 An alias for new_norestriction.

 and(RELATION, ...)

 Creates a new Lintian::Relation object produced by AND'ing all the relations

 together. Semantically it is the similar to:

 Lintian::Relation->new (join (', ', @relations))

 Except it can avoid some overhead and it works if some of the elements are

 Lintian::Relation objects already.

INSTANCE METHODS

 duplicates()

 Returns a list of duplicated elements within the relation object. Each element

 of the returned list will be a reference to an anonymous array holding a set of

 relations considered duplicates of each other. Two relations are considered

 duplicates if one implies the other, meaning that if one relationship is

 satisfied, the other is necessarily satisfied. This relationship does not have

 to be commutative: the opposite implication may not hold. Page 2/6

 restriction_less()

 Returns a restriction-less variant of this relation (or this relation object if

 it has no restrictions).

 implies(RELATION)

 Returns true if the relationship implies RELATION, meaning that if the

 Lintian::Relation object is satisfied, RELATION will always be satisfied.

 RELATION may be either a string or another Lintian::Relation object.

 By default, architecture restrictions are honored in RELATION if it is a

 string. If architecture restrictions should be ignored in RELATION, create a

 Lintian::Relation object with new_noarch() and pass that in as RELATION instead

 of the string.

 implies_element

 implies_array

 implies_inverse(RELATION)

 Returns true if the relationship implies that RELATION is certainly false,

 meaning that if the Lintian::Relation object is satisfied, RELATION cannot be

 satisfied. RELATION may be either a string or another Lintian::Relation

 object.

 As with implies(), by default, architecture restrictions are honored in

 RELATION if it is a string. If architecture restrictions should be ignored in

 RELATION, create a Lintian::Relation object with new_noarch() and pass that in

 as RELATION instead of the string.

 implies_element_inverse

 implies_array_inverse

 unparse()

 Returns the textual form of a relationship. This converts the internal form

 back into the textual representation and returns that, not the original

 argument, so the spacing is standardized. Returns undef on internal failures

 (such as an object in an unexpected format).

 matches (REGEX[, WHAT])

 Check if one of the predicates in this relation matches REGEX. WHAT determines

 what is tested against REGEX and if not given, defaults to VISIT_PRED_NAME.

 This method will return a truth value if REGEX matches at least one predicate Page 3/6

 or clause (as defined by the WHAT parameter - see below).

 NOTE: Often "implies" (or "implies_inverse") is a better choice than this

 method. This method should generally only be used when checking for a

 "pattern" package (e.g. phpapi-[\d\w+]+).

 WHAT can be one of:

 VISIT_PRED_NAME

 Match REGEX against the package name in each predicate (i.e. version and

 architecture constrains are ignored). Each predicate is tested in

 isolation. As an example:

 my $rel = Lintian::Relation->new ('somepkg | pkg-0 (>= 1)');

 # Will match (version is ignored)

 $rel->matches (qr/^pkg-\d$/, VISIT_PRED_NAME);

 VISIT_PRED_FULL

 Match REGEX against the full (normalized) predicate (i.e. including version

 and architecture). Each predicate is tested in isolation. As an example:

 my $vrel = Lintian::Relation->new ('somepkg | pkg-0 (>= 1)');

 my $uvrel = Lintian::Relation->new ('somepkg | pkg-0');

 # Will NOT match (does not match with version)

 $vrel->matches (qr/^pkg-\d$/, VISIT_PRED_FULL);

 # Will match (this relation does not have a version)

 $uvrel->matches (qr/^pkg-\d$/, VISIT_PRED_FULL);

 # Will match (but only because there is a version)

 $vrel->matches (qr/^pkg-\d \(.*\)$/, VISIT_PRED_FULL);

 # Will NOT match (there is no version in the relation)

 $uvrel->matches (qr/^pkg-\d \(.*\)$/, VISIT_PRED_FULL);

 VISIT_OR_CLAUSE_FULL

 Match REGEX against the full (normalized) OR clause. Each predicate will

 have both version and architecture constrains present. As an example:

 my $vpred = Lintian::Relation->new ('pkg-0 (>= 1)');

 my $orrel = Lintian::Relation->new ('somepkg | pkg-0 (>= 1)');

 my $rorrel = Lintian::Relation->new ('pkg-0 (>= 1) | somepkg');

 # Will match

 $vrel->matches (qr/^pkg-\d(?: \([^\)]\))?$/, VISIT_OR_CLAUSE_FULL); Page 4/6

 # These Will NOT match (does not match the "|" and the "somepkg" part)

 $orrel->matches (qr/^pkg-\d(?: \([^\)]\))?$/, VISIT_OR_CLAUSE_FULL);

 $rorrel->matches (qr/^pkg-\d(?: \([^\)]\))?$/, VISIT_OR_CLAUSE_FULL);

 visit (CODE[, FLAGS])

 Visit clauses or predicates of this relation. Each clause or predicate is

 passed to CODE as first argument and will be available as $_.

 The optional bitmask parameter, FLAGS, can be used to control what is visited

 and such. If FLAGS is not given, it defaults to VISIT_PRED_NAME. The possible

 values of FLAGS are:

 VISIT_PRED_NAME

 The package name in each predicate is visited, but the version and

 architecture part(s) are left out (if any).

 VISIT_PRED_FULL

 The full predicates are visited in turn. The predicate will be normalized

 (by "unparse").

 VISIT_OR_CLAUSE_FULL

 CODE will be passed the full OR clauses of this relation. The clauses will

 be normalized (by "unparse")

 Note: It will not visit the underlying predicates in the clause.

 VISIT_STOP_FIRST_MATCH

 Stop the visits the first time CODE returns a truth value. This is similar

 to first, except visit will return the value returned by CODE.

 Except where a given flag specifies otherwise, the return value of visit is

 last value returned by CODE (or "undef" for the empty relation).

 empty

 Returns a truth value if this relation is empty (i.e. it contains no

 predicates).

 unparsable_predicates

 Returns a list of predicates that were unparsable.

 They are returned in the original textual representation and are also sorted by

 said representation.

AUTHOR

 Originally written by Russ Allbery <rra@debian.org> for Lintian. Page 5/6

SEE ALSO

 lintian(1)

Lintian v2.62.0ubuntu2.2 2022-11-09 Lintian::Relation(3)

Page 6/6

