
Linux Ubuntu 22.4.5 Manual Pages on command 'Lintian::Command.3'

$ man Lintian::Command.3

Lintian::Command(3) Debian Package Checker Lintian::Command(3)

NAME

 Lintian::Command - Utilities to execute other commands from lintian code

SYNOPSIS

 use Lintian::Command qw(spawn);

 # simplest possible call

 my $success = spawn({}, ['command']);

 # catch output

 my $opts = {};

 $success = spawn($opts, ['command']);

 if ($success) {

 print "STDOUT: $opts->{out}\n";

 print "STDERR: $opts->{err}\n";

 }

 # from file to file

 $opts = { in => 'infile.txt', out => 'outfile.txt' };

 $success = spawn($opts, ['command']);

 # piping

 $success = spawn({}, ['command'], "|", ['othercommand']);

DESCRIPTION

 Lintian::Command is a thin wrapper around IPC::Run, that catches exception and

 implements a useful default behaviour for input and output redirection.
Page 1/5

 Lintian::Command provides a function spawn() which is a wrapper around

 IPC::Run::run() resp. IPC::Run::start() (depending on whether a pipe is requested).

 To wait for finished child processes, it also provides the reap() function as a

 wrapper around IPC::Run::finish().

 "spawn($opts, @cmds)"

 The @cmds array is given to IPC::Run::run() (or ::start()) unaltered, but should

 only be used for commands and piping symbols (i.e. all of the elements should be

 either an array reference, a code reference, '|', or '&'). I/O redirection is

 handled via the $opts hash reference. If you need more fine grained control than

 that, you should just use IPC::Run directly.

 $opts is a hash reference which can be used to set options and to retrieve the

 status and output of the command executed.

 The following hash keys can be set to alter the behaviour of spawn():

 in STDIN for the first forked child. Defaults to "\undef".

 CAVEAT: Due to #301774, passing a SCALAR ref as STDIN for the child leaks

 memory. The leak is plugged for the "\undef" case in spawn, but other scalar

 refs may still be leaked.

 pipe_in

 Use a pipe for STDIN and start the process in the background. You will need to

 close the pipe after use and call $opts->{harness}->finish in order for the

 started process to end properly.

 out STDOUT of the last forked child. Will be set to a newly created scalar

 reference by default which can be used to retrieve the output after the call.

 Can be '&N' (e.g. &2) to redirect it to (numeric) file descriptor.

 out_append

 STDOUT of all forked children, cannot be used with out and should only be used

 with files. Unlike out, this appends the output to the file instead of

 truncating the file.

 pipe_out

 Use a pipe for STDOUT and start the process in the background. You will need

 to call $opts->{harness}->finish in order for the started process to end

 properly.

 err STDERR of all forked children. Defaults to STDERR of the parent. Page 2/5

 Can be '&N' (e.g. &1) to redirect it to (numeric) file descriptor.

 err_append

 STDERR of all forked children, cannot be used with err and should only be used

 with files. Unlike err, this appends the output to the file instead of

 truncating the file.

 pipe_err

 Use a pipe for STDERR and start the process in the background. You will need

 to call $opts->{harness}->finish in order for the started process to end

 properly.

 fail

 Configures the behaviour in case of errors. The default is 'exception', which

 will cause spawn() to die in case of exceptions thrown by IPC::Run. If set to

 'error' instead, it will also die if the command exits with a non-zero error

 code. If exceptions should be handled by the caller, setting it to 'never'

 will cause it to store the exception in the "exception" key instead.

 child_before_exec

 Run the given subroutine in each of the children before they run "exec".

 This is passed to "harness" in IPC::Run as the init keyword.

 The following additional keys will be set during the execution of spawn():

 harness

 Will contain the IPC::Run object used for the call which can be used to query

 the exit values of the forked programs (E.g. with results() and full_results())

 and to wait for processes started in the background.

 exception

 If an exception is raised during the execution of the commands, and if "fail"

 is set to 'never', the exception will be caught and stored under this key.

 success

 Will contain the return value of spawn().

 "reap($opts[, $opts[,...]])"

 If you used one of the "pipe_*" options to spawn() or used the shell-style "&"

 operator to send the process to the background, you will need to wait for your

 child processes to finish. For this you can use the reap() function, which you can

 call with the $opts hash reference you gave to spawn() and which will do the right Page 3/5

 thing. Multiple $opts can be passed.

 Note however that this function will not close any of the pipes for you, so you

 probably want to do that first before calling this function.

 The following keys of the $opts hash have roughly the same function as for spawn():

 harness

 fail

 success

 exception

 All other keys are probably just ignored.

 "kill($opts[, $opts[, ...]])"

 This is a simple wrapper around the kill_kill function. It doesn't allow any

 customisation, but takes an $opts hash ref and SIGKILLs the process two seconds

 after SIGTERM is sent. If multiple hash refs are passed it executes kill_kill on

 each of them. The return status is the ORed value of all the executions of

 kill_kill.

 "done($opts)"

 Check if a process and its children are done. This is useful when one wants to know

 whether reap() can be called without blocking waiting for the process. It takes a

 single hash reference as returned by spawn.

 "safe_qx([$opts,] @cmds)"

 Variant of spawn that emulates the "qx()" operator by returning the captured

 output.

 It takes the same arguments as "spawn" and they have the same basic semantics with

 the following exceptions:

 The initial $opts is optional.

 If only a single command is to be run, the surrounding list reference can be

 omitted (see the examples below).

 If $opts is given, caller must ensure that the output is captured as a scalar

 reference in "$opts-"{out}> (possibly by omitting the "out" and "out_append" keys).

 Furthermore, the commands should not be backgrounded, so they cannot use '&' nor

 (e.g. "$opts-"{pipe_in}>).

 If needed $? will be set after the call like for "qx()".

 Examples: Page 4/5

 # Capture the output of a simple command

 # - Both are eqv.

 safe_qx('grep', 'some-pattern', 'path/to/file');

 safe_qx(['grep', 'some-pattern', 'path/to/file']);

 # Capture the output of some pipeline

 safe_qx(['grep', 'some-pattern', 'path/to/file'], '|',

 ['head', '-n1'])

 # Call nproc and capture stdout and stderr interleaved

 safe_qx({ 'err' => '&1'}, 'nproc')

 # WRONG: Runs grep with 5 arguments including a literal "|" and

 # "-n1", which will generally fail with bad arguments.

 safe_qx('grep', 'some-pattern', 'path/to/file', '|',

 'head', '-n1')

 Possible known issue: It might not possible to discard stdout and capture stderr

 instead.

EXPORTS

 Lintian::Command exports nothing by default, but you can export the spawn() and

 reap() functions.

AUTHOR

 Originally written by Frank Lichtenheld <djpig@debian.org> for Lintian.

SEE ALSO

 lintian(1), IPC::Run

Lintian v2.62.0ubuntu2.2 2022-11-09 Lintian::Command(3)

Page 5/5

