Manual Pages for UNIX Darwin command on man SSL_set_tmp_dh_callback
MyWebUniversity

Manual Pages for UNIX Darwin command on man SSL_set_tmp_dh_callback

SSLCTXsettmpdhcallback(3) OpenSSL SSLCTXsettmpdhcallback(3)

NAME

SSLCTXsettmpdhcallback, SSLCTXsettmpdh,

SSLsettmpdhcallback, SSLsettmpdh - handle DH keys for ephemeral

key exchange

SYNOPSIS

#include

void SSLCTXsettmpdhcallback(SSLCTX *ctx, DH *(*tmpdhcallback)(SSL *ssl, int isexport, int keylength)); long SSLCTXsettmpdh(SSLCTX *ctx, DH *dh); void SSLsettmpdhcallback(SSLCTX *ctx, DH *(*tmpdhcallback)(SSL *ssl, int isexport, int keylength)); long SSLsettmpdh(SSL *ssl, DH *dh) DH *(*tmpdhcallback)(SSL *ssl, int isexport, int keylength));

DESCRIPTION

SSLCTXsettmpdhcallback() sets the callback function for ccttxx to be used when a DH parameters are required to ttmmppddhhccaallllbbaacckk. The callback is inherited by all ssssll objects created from ccttxx. SSLCTXsettmpdh() sets DH parameters to be used to be ddhh. The key is inherited by all ssssll objects created from ccttxx. SSLsettmpdhcallback() sets the callback only for ssssll. SSLsettmpdh() sets the parameters only for ssssll. These functions apply to SSL/TLS servers only. NNOOTTEESS When using a cipher with RSA authentication, an ephemeral DH key exchange can take place. Ciphers with DSA keys always use ephemeral DH keys as well. In these cases, the session data are negotiated using the ephemeral/temporary DH key and the key supplied and certified by the certificate chain is only used for signing. Anonymous ciphers (without a permanent server key) also use ephemeral DH keys. Using ephemeral DH key exchange yields forward secrecy, as the connection can only be decrypted, when the DH key is known. By generating a temporary DH key inside the server application that is lost when the application is left, it becomes impossible for an attacker to decrypt past sessions, even if he gets hold of the normal (certified) key, as this key was only used for signing. In order to perform a DH key exchange the server must use a DH group (DH parameters) and generate a DH key. The server will always generate a new DH key during the negotiation, when the DH parameters are supplied via callback and/or when the SSLOPSINGLEDHUSE option of SSLCTXsetoptions(3) is set. It will immediately create a DH key, when DH parameters are supplied via SSLCTXsettmpdh() and SSLOPSINGLEDHUSE is not set. In this case, it may happen that a key is generated on initialization without later being needed, while on the other hand the computer time during the negotiation is being saved. If "strong" primes were used to generate the DH parameters, it is not strictly necessary to generate a new key for each handshake but it does improve forward secrecy. If it is not assured, that "strong" primes were used (see especially the section about DSA parameters below), SSLOPSINGLEDHUSE must be used in order to prevent small subgroup attacks. Always using SSLOPSINGLEDHUSE has an impact on the computer time needed during negotiation, but it is not very large, so application authors/users should consider to always enable this option. As generating DH parameters is extremely time consuming, an application should not generate the parameters on the fly but supply the parameters. DH parameters can be reused, as the actual key is newly generated during the negotiation. The risk in reusing DH parameters is that an attacker may specialize on a very often used DH group. Applications should therefore generate their own DH parameters during the installation process using the openssl dhparam(1) application. In order to reduce the computer time needed for this generation, it is possible to use DSA parameters instead (see dhparam(1)), but in this case SSLOPSINGLEDHUSE is mandatory. Application authors may compile in DH parameters. Files dh512.pem, dh1024.pem, dh2048.pem, and dh4096 in the 'apps' directory of current version of the OpenSSL distribution contain the 'SKIP' DH parameters,

which use safe primes and were generated verifiably pseudo-randomly.

These files can be converted into C code using the -CC option of the

dhparam(1) application. Authors may also generate their own set of parameters using dhparam(1), but a user may not be sure how the parameters were generated. The generation of DH parameters during installation is therefore recommended. An application may either directly specify the DH parameters or can supply the DH parameters via a callback function. The callback approach has the advantage, that the callback may supply DH parameters for different key lengths. The ttmmppddhhccaallllbbaacckk is called with the kkeeyylleennggtthh needed and the iisseexxppoorrtt information. The iisseexxppoorrtt flag is set, when the ephemeral DH key exchange is performed with an export cipher. EEXXAAMMPPLLEESS Handle DH parameters for key lengths of 512 and 1024 bits. (Error handling partly left out.) ... /* Set up ephemeral DH stuff */ DH *dh512 = NULL; DH *dh1024 = NULL; FILE *paramfile; ...

/* "openssl dhparam -out dhparam512.pem -2 512" */

paramfile = fopen("dhparam512.pem", "r"); if (paramfile) { dh512 = PEMreadDHparams(paramfile, NULL, NULL, NULL); fclose(paramfile); }

/* "openssl dhparam -out dhparam1024.pem -2 1024" */

paramfile = fopen("dhparam1024.pem", "r"); if (paramfile) { dh1024 = PEMreadDHparams(paramfile, NULL, NULL, NULL); fclose(paramfile); } ...

/* "openssl dhparam -C -2 512" etc... */

DH *getdh512() { ... } DH *getdh1024() { ... } DH *tmpdhcallback(SSL *s, int isexport, int keylength) { DH *dhtmp=NULL; switch (keylength) { case 512: if (!dh512) dh512 = getdh512(); dhtmp = dh512; break; case 1024: if (!dh1024) dh1024 = getdh1024(); dhtmp = dh1024; break; default: /* Generating a key on the fly is very costly, so use what is there */ setupdhparameterslikeabove(); } return(dhtmp); }

RETURN VALUES

SSLCTXsettmpdhcallback() and SSLsettmpdhcallback() do not return diagnostic output. SSLCTXsettmpdh() and SSLsettmpdh() do return 1 on success and 0 on failure. Check the error queue to find out the reason of failure.

SEE ALSO

ssl(3), SSLCTXsetcipherlist(3), SSLCTXsettmprsacallback(3), SSLCTXsetoptions(3), ciphers(1), dhparam(1)

0.9.7l 2001-09-06 SSLCTXsettmpdhcallback(3)




Contact us      |      About us      |      Term of use      |       Copyright © 2000-2019 MyWebUniversity.com ™